Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapısal Çelik Malzemenin Farklı Yükler Altındaki Basınç Dayanımının ASTM D695 Standardına Göre Sayısal Olarak İncelenmesi

Yıl 2025, Cilt: 40 Sayı: 1, 227 - 237, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1666074

Öz

Malzemelerin belirli standartlara göre mekanik özelliklerinin belirlenmesi amacıyla deneysel çalışmaların yanında sayısal analiz yöntemleri de sıklıkla kullanılmaktadır. Bu çalışmada, basınç dayanımı testi ASTM D695-15 standardına göre bilgisayar ortamında sayısal olarak modellenmiştir. Belirtilen standart ölçülerinde ve 1 mm kalınlığında tasarlanan levhaya yapısal çelik malzeme tanımlanarak analizler gerçekleştirilmiştir. Sayısal analizlerde kuvvet ve deplasman olmak üzere iki farklı yükleme tipi incelenmiştir. Kuvvet yükü (FL) uygulanan analizlerde 2, 4, 6, 8, 10 ve 12 N basma kuvvetlerinin, deplasman yükü (DL) uygulanan analizlerde ise 1, 2, 3, 4, 5 ve 6 mm basma deplasmanlarının uygulanmasıyla toplam oniki farklı durumda sayısal analizler gerçekleştirilmiştir. Farklı yükleme tipi ve farklı yükleme şiddetlerinin test numunesinin basınç dayanımı üzerindeki etkileri araştırılmıştır. FL ve DL tanımlanan tüm analizlerde FL ve DL şiddetinin artmasıyla, test numunesi üzerindeki gerilmelerin ve toplam deformasyonun da arttığı belirlenmiştir.

Kaynakça

  • 1. Dwivedi, K., Joshi, S., Nair, R., Sapre, M.S. & Jatti, V. (2024). Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature- inspired machine learning algorithms. Materials Today Communications, 38(108233), 1-15.
  • 2. Vidakis, N., Petousis, M., Karapidakis, E., Mountakis, N., David, C. & Sagris, D. (2023). Energy consumption versus strength in MEΧ 3D printing of polylactic acid. Advances in Industrial and Manufacturing Engineering, 6(100119), 1-19.
  • 3. Cláudio, R.A., Dupont, J., Baptista, R., Leite, M. & Reis, L. (2022). Behaviour evaluation of 3D printed polylactic acid under compression. Journal of Materials Research and Technology, 21, 4052-4066.
  • 4. Johri, N., Agarwal, G., Mishra, R.K. & Thakur, H.C. (2022). FEM analysis of polymeric hybrid composites. Materials Today: Proceedings, 57, 383-390.
  • 5. Pernet, B., Nagel, J.K. & Zhang, H. (2022). Compressive strength assessment of 3D printing infill patterns. Procedia CIRP, 105, 682-687.
  • 6. Selvamani, S.K., Ngui, W.K., Rajan, K., Samykano, M., Kumar R,R. & Badadhe, A.M. (2022). Investigation of bending and compression properties on PLA-brass composite using FDM. Physics and Chemistry of the Earth, 128(103251), 1-8.
  • 7. Subramaniyan, M., Karuppan, S.P.P., Anand A.P. & Vasanthan A.P. (2022). Survey on compression property of sandwich 3D printed PLA components. Materials Today: Proceedings, 66, 955-961.
  • 8. Srinivasan, T., Suresh, G., Ramu, P., Vignesh, R., Harshan, A.V. & Vignesh, K.P. (2021). Effect of hygrothermal ageing on the compressive behavior of glass fiber reinforced IPN composite pipes. Materials Today: Proceedings, 45, 1354-1359.
  • 9. Morales, N.G., Fleck, T.J. & Rhoads, J.F. (2018). The effect of interlayer cooling on the mechanical properties of components printed via fused deposition. Additive Manufacturing, 24, 243-248. 10. Vidakis, N., Petousis, M., Vairis, A., Savvakis, K. & Maniadi, A. (2017). On the compressive behavior of an FDM Steward Platform part. Journal of Computational Design and Engineering, 4(4), 339–346.
  • 11. Cocchi, A., Montagnier, O. & Hochard, C. (2021). Study of hourglass-shaped specimens for the analysis of compression behaviour in fibre direction of FRP composites using compression and four-point bending tests. Composites Part A: Applied Science and Manufacturing, 144(106332), 1-12.
  • 12. Haseebuddin, M.R., Santhosh, S. & Shandilya, A.B. (2021). Development and characterization of PET flakes reinforced polyester resin composites. Materials Today: Proceedings, 46, 6075-6082.
  • 13. Squires, C.A., Netting, K.H. & Chambers, A.R. (2007). Understanding the factors affecting the compressive testing of unidirectional carbon fibre composites. Composites Part B: Engineering, 38(4), 481-487.
  • 14. ASTM D695 – 15, (2015). Standard test method for compressive properties of rigid plastics. ASTM International, https://doi.org/10.1520/D0695-15. Date of access: 31.03.2022.
  • 15. Product Information Compression test kits (end-loading), (2024). Zwick Roell, https://www.zwickroell.com/fileadmin/content/Files/SharePoint/user_upload/PI_EN/10_807_Compression_test_kits_end_loading_PI_EN.pdf. Date of access: 17.10.2024.

Numerical Investigation of Compressive Strength of Structural Steel Material Under Different Loads According to ASTM D695 Standard

Yıl 2025, Cilt: 40 Sayı: 1, 227 - 237, 26.03.2025
https://doi.org/10.21605/cukurovaumfd.1666074

Öz

In order to determine the mechanical properties of materials according to certain standards, numerical analysis methods are frequently used in addition to experimental studies. In this study, the compressive strength test was numerically modeled in a computer environment according to the ASTM D695-15 standard. Analyses were carried out by defining structural steel material for the plate designed with the specified standard dimensions and 1 mm thickness. In the numerical analysis, two different loading types, force and displacement, were examined. Numerical analyzes were carried out in a total of twelve different situations by applying 2, 4, 6, 8, 10 and 12 N compressive forces in the analyzes where force load (FL) was applied, and 1, 2, 3, 4, 5 and 6 mm compressive displacements in the analyzes where displacement load (DL) was applied. The effects of different loading types and different loading intensities on the compressive strength of the test specimen were investigated. In all analyses where FL and DL were defined, it was determined that as the FL and DL intensity increased, the stresses and total deformation on the test specimen also increased.

Kaynakça

  • 1. Dwivedi, K., Joshi, S., Nair, R., Sapre, M.S. & Jatti, V. (2024). Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature- inspired machine learning algorithms. Materials Today Communications, 38(108233), 1-15.
  • 2. Vidakis, N., Petousis, M., Karapidakis, E., Mountakis, N., David, C. & Sagris, D. (2023). Energy consumption versus strength in MEΧ 3D printing of polylactic acid. Advances in Industrial and Manufacturing Engineering, 6(100119), 1-19.
  • 3. Cláudio, R.A., Dupont, J., Baptista, R., Leite, M. & Reis, L. (2022). Behaviour evaluation of 3D printed polylactic acid under compression. Journal of Materials Research and Technology, 21, 4052-4066.
  • 4. Johri, N., Agarwal, G., Mishra, R.K. & Thakur, H.C. (2022). FEM analysis of polymeric hybrid composites. Materials Today: Proceedings, 57, 383-390.
  • 5. Pernet, B., Nagel, J.K. & Zhang, H. (2022). Compressive strength assessment of 3D printing infill patterns. Procedia CIRP, 105, 682-687.
  • 6. Selvamani, S.K., Ngui, W.K., Rajan, K., Samykano, M., Kumar R,R. & Badadhe, A.M. (2022). Investigation of bending and compression properties on PLA-brass composite using FDM. Physics and Chemistry of the Earth, 128(103251), 1-8.
  • 7. Subramaniyan, M., Karuppan, S.P.P., Anand A.P. & Vasanthan A.P. (2022). Survey on compression property of sandwich 3D printed PLA components. Materials Today: Proceedings, 66, 955-961.
  • 8. Srinivasan, T., Suresh, G., Ramu, P., Vignesh, R., Harshan, A.V. & Vignesh, K.P. (2021). Effect of hygrothermal ageing on the compressive behavior of glass fiber reinforced IPN composite pipes. Materials Today: Proceedings, 45, 1354-1359.
  • 9. Morales, N.G., Fleck, T.J. & Rhoads, J.F. (2018). The effect of interlayer cooling on the mechanical properties of components printed via fused deposition. Additive Manufacturing, 24, 243-248. 10. Vidakis, N., Petousis, M., Vairis, A., Savvakis, K. & Maniadi, A. (2017). On the compressive behavior of an FDM Steward Platform part. Journal of Computational Design and Engineering, 4(4), 339–346.
  • 11. Cocchi, A., Montagnier, O. & Hochard, C. (2021). Study of hourglass-shaped specimens for the analysis of compression behaviour in fibre direction of FRP composites using compression and four-point bending tests. Composites Part A: Applied Science and Manufacturing, 144(106332), 1-12.
  • 12. Haseebuddin, M.R., Santhosh, S. & Shandilya, A.B. (2021). Development and characterization of PET flakes reinforced polyester resin composites. Materials Today: Proceedings, 46, 6075-6082.
  • 13. Squires, C.A., Netting, K.H. & Chambers, A.R. (2007). Understanding the factors affecting the compressive testing of unidirectional carbon fibre composites. Composites Part B: Engineering, 38(4), 481-487.
  • 14. ASTM D695 – 15, (2015). Standard test method for compressive properties of rigid plastics. ASTM International, https://doi.org/10.1520/D0695-15. Date of access: 31.03.2022.
  • 15. Product Information Compression test kits (end-loading), (2024). Zwick Roell, https://www.zwickroell.com/fileadmin/content/Files/SharePoint/user_upload/PI_EN/10_807_Compression_test_kits_end_loading_PI_EN.pdf. Date of access: 17.10.2024.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Katı Mekanik
Bölüm Makaleler
Yazarlar

Muhammed Safa Kamer 0000-0003-3852-1031

Yayımlanma Tarihi 26 Mart 2025
Gönderilme Tarihi 1 Ocak 2025
Kabul Tarihi 25 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Kamer, M. S. (2025). Numerical Investigation of Compressive Strength of Structural Steel Material Under Different Loads According to ASTM D695 Standard. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(1), 227-237. https://doi.org/10.21605/cukurovaumfd.1666074