Araştırma Makalesi
BibTex RIS Kaynak Göster

Transfer of Different Finishing Chemicals to Textile Surfaces by Solution Blowing Technique and Evaluation of Their Performance

Yıl 2025, Cilt: 40 Sayı: 3, 617 - 626, 26.09.2025
https://doi.org/10.21605/cukurovaumfd.1744255

Öz

The study investigated the transferability of finishing chemicals onto fabric surfaces by spraying them using the solution blow spinning (SBS) technique. The aim was to reduce water, chemical, and energy consumption compared to conventional methods. For comparison, the application was also performed using the impregnation method. Hydrophilic silicone emulsion (softener) and water-repellent chemical were first transferred to pre-dyed supreme and flamed supreme fabrics using a fulard machine, then dried and condensed in a stenter. A prototype SBS device was integrated in front of the stenter to create a new application method. Performance tests were conducted on fabrics treated with both methods, and theoretical chemical and energy consumption calculations were performed. The results showed similar performance. Thus, it was determined that the SBS technique can be used as a low-flotte application method and offers an environmentally friendly, sustainable alternative with lower resource consumption compared to the conventional method.

Proje Numarası

3191059

Kaynakça

  • 1. Kanmaz, N., Kavurucu, B., Ekmen, E., Yaman, Ö., Yazan, S.Y. & Ünver, Ü. (2022). Türkiye’de endüstriyel su tüketimi ve arıtımı. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 3(1), 19-33.
  • 2. Chen, X., Memon, H.A., Wang, Y., Marriam, I. & Tebyetekerwa, M. (2021). Circular economy and sustainability of the clothing and textile industry. Materials Circular Economy, 3(1), 1-9.
  • 3. Uluçay, A., Ceyhan, G., Balcı, O., Işık, C. & Yavuz, S. (2024). Investigation of dyestuff recycled from wastewater containing indigo/sulfur dyes. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 969-978.
  • 4. Basyigit, Z.O., Kut, D. & Hauser, P. (2020). Development of multifunctional cotton fabric via chemical foam application method. Textile Research Journal, 90(9-10), 991-1001.
  • 5. Omerogullari Basyigit, Z. (2021). Application technologies for functional finishing of textile materials. İçinde Textiles for Functional Applications (1-21). IntechOpen.
  • 6. Yavuz, S. & Balci, O. (2024). Pamuklu ipliklerin köpük aplikasyon metodu kullanılarak indigo boyarmadde ile boyanması dyeing of cotton yarns with indigo dyestuff using the foam application method abstract. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(2), 515-526.
  • 7. Tapanyiğit, E.B., Pektaş, K., Özdemi̇r, M. & Balci, O. (2022). Farklı dokusuz yüzeyler üzerinde çözelti üfleme eğirme tekniği ile poliamid 6.6 esaslı nano lif eldesi ve araç kabin filtreleri için uygunluğunun araştırılması. Tekstil ve Mühendis, 29(127), 116-124.
  • 8. Gao, Y., Zhang, J., Su, Y., Wang, H., Wang, X.X., Huang, L.P. & Long, Y.Z. (2021). Recent progress and challenges in solution blow spinning. Materials Horizons, 8(2), 426-446.
  • 9. Silva, M.J., Dias, Y.J. & Yarin, A.L. (2023). Electrically-assisted supersonic solution blowing and solution blow spinning of fibrous materials from natural rubber extracted from havea brasilienses. Industrial Crops and Products, 192(October 2022), 116101.
  • 10. Medeiros, E.S., Glenn, G.M., Klamczynski, A.P., Orts, W.J. & Mattoso, L.H.C. (2009). Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. Journal of Applied Polymer Science, 113(4), 2322-2330.
  • 11. Sinha-Ray, S., Sinha-Ray, S., Yarin, A.L. & Pourdeyhimi, B. (2015). Application of solution-blown 20-50nm nanofibers in filtration of nanoparticles: The efficient van der waals collectors. Journal of Membrane Science, 485, 132-150.
  • 12. Khan, M.K.R. & Hassan, M.N. (2021). Solution blow spinning (SBS): A promising spinning system for submicron/nanofibre production. Textile & Leather Review, 4(3), 181-200.
  • 13. Liu, Y., Zhang, G., Zhuang, X., Li, S., Shi, L., Kang, W. & Xu, X. (2019). Solution blown nylon 6 nanofibrous membrane as scaffold for nanofiltration. Polymers, 11(2), 1-15.
  • 14. Dirany, Z., González-Benito, J., Ginatta, P., Nguewa, P. & González-Gaitano, G. (2025). Solution blow spun polymeric nanofibres embedding cyclodextrin complexes of miltefosine: An approach to the production of sprayable dressings for the treatment of cutaneous leishmaniasis. Carbohydrate Polymers, 353(September 2024), 123173.
  • 15. Rossi, P.F., dos Santos, D.M., Marangon, C.A., Teodoro, K.B.R., Costa, C.S., Inada, N.M. & Oréfice, R.L. (2025). Biobased composite fibrous membrane using PLA and lignin carbon dots fabricated via solution blow spinning for wound dressing application. Materials Today Communications, 42(November 2024), 111418.
  • 16. Gao, Q., Zhu, S., Huang, Y., Wen, C., Zhang, Z., Yang, F. & Feng, Y. (2024). Fast sweat wicking enabled by unidirectional water transport in biodegradable trilayered porous membranes produced via papermaking. ACS Sustainable Chemistry and Engineering, 12(21), 8041-8050.
  • 17. Zaman, M., Liu, H., Xiao, H., Chibante, F. & Ni, Y. (2013). Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish. Carbohydrate Polymers, 91(2), 560-567.
  • 18. Shi, W., Pei, L., Gu, X. & Wang, J. (2023). Investigation on decontamination mechanism of moisture-wicking fabrics during home laundry. Journal of Surfactants and Detergents, 26(5), 693-702.
  • 19. Akinci, F.C., Kaynak, H.K. & Korkmaz, Y. (2018). Effects of filament fineness and weft sett on the permeability properties of microfilament woven fabrics. Tekstil ve Muhendis, 25(111), 234-240.
  • 20. Mazloompour, M., Ansari, N. & Hemmatinejad, N. (2007). Wetting behaviour of raw and water-repellent cotton fabrics using wetting kinetic measurements. Indian Journal of Fibre and Textile Research, 32(1), 93-98.
  • 21. Simile, C.B. (2004). Critical evaluation of wicking in performance fabrics. Georgia Institute of Technology, Master of Science in the School of Polymer, Textile, and Fiber Engineering.
  • 22. Chowdhury, M.J. & Nasrin, S. (2017). Effect of performance finish on woven fabric properties. International Journal of Scientific and Research Publications, 7(7), 814.
  • 23. Chowdhury, K.P., (2018). Effect of special finishes on the functional properties of cotton fabrics. Journal of Textile Science and Technology, 04(02), 49-66.
  • 24. Ho, L.Y. & Kan, C.W. (2022). Effect of resin finishing on some properties of 100% cotton light weight woven fabric. Coatings, 12(11).
  • 25. Cay, A., Tarakcioǧlu, I. & Hepbasli, A. (2009). A study on the exergetic analysis of continuous textile dryers. International Journal of Exergy, 6(3), 422-439.
  • 26. Raafi, S.M. & Fatema, U.K. (2021). Implementation of pre-heating system in stenters for improving machine performance and increasing efficiency. Journal of Textile Science and Technology, 07(04), 143-151.
  • 27. Wei, Y., Gong, R.H., Ning, L. & Ding, X. (2018). Enhancing the energy efficiency of domestic dryer by drying process optimization. Drying Technology, 36(7), 790-803.

Çözelti Üfleme Tekniği ile Farklı Bitim İşlemi Kimyasallarının Tekstil Yüzeylerine Aktarılması ve Performanslarının Değerlendirilmesi

Yıl 2025, Cilt: 40 Sayı: 3, 617 - 626, 26.09.2025
https://doi.org/10.21605/cukurovaumfd.1744255

Öz

Çalışmada, çözelti üfleme eğirme (SBS) tekniği kullanılarak bitim kimyasallarının kumaş yüzeyine püskürtülerek aktarılabilirliği incelenmiştir. Amaç, konvansiyonel yöntemlere kıyasla su, kimyasal ve enerji tüketimini azaltmaktır. Karşılaştırma için emdirme yöntemiyle de uygulama yapılmıştır. Hidrofil silikon emülsiyonu (yumuşatıcı) ve su itici kimyasal, önceden boyanmış süprem ve flamlı süprem kumaşlara önce fular makinesiyle aktarılmış, ardından ramözde kurutma ve kondenzasyon yapılmıştır. Prototip SBS cihazı, ramöz önüne entegre edilerek yeni uygulama yöntemi oluşturulmuştur. Her iki yöntemle işlem gören kumaşlara performans testleri uygulanmış, ayrıca teorik kimyasal ve enerji tüketimleri hesaplanmıştır. Sonuçlar, benzer performans elde edildiğini göstermiştir. Böylece SBS tekniğinin az flotte aplikasyon yöntemi olarak kullanılabileceği ve konvansiyonel yönteme göre daha az kaynak tüketimiyle çevreci, sürdürülebilir bir alternatif sunduğu belirlenmiştir.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

3191059

Teşekkür

Bu çalışma, 3191059 nolu “Çözelti Üfleme Tekniği Kullanılarak Ramöz Önü Aplikasyon Sistemi Tasarımı, Apre Proseslerinin Geliştirilmesi” başlıklı TÜBİTAK TEYDEB 1501 Sanayi Ar-Ge Projeleri Destekleme Programı kapsamında yürütülen proje çerçevesinde gerçekleştirilmiştir. Sağladığı maddi destek için Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK) teşekkür ederiz. 3191059 nolu projede proje ortağı olarak yer alan İnovaktif Ar-Ge Danışmanlık Kimya Ozon Sistemleri Kozmetik San. Tic. Ltd. Şti.’ ne proje süresince vermiş olduğu destekler için teşekkür ederiz.

Kaynakça

  • 1. Kanmaz, N., Kavurucu, B., Ekmen, E., Yaman, Ö., Yazan, S.Y. & Ünver, Ü. (2022). Türkiye’de endüstriyel su tüketimi ve arıtımı. İleri Mühendislik Çalışmaları ve Teknolojileri Dergisi, 3(1), 19-33.
  • 2. Chen, X., Memon, H.A., Wang, Y., Marriam, I. & Tebyetekerwa, M. (2021). Circular economy and sustainability of the clothing and textile industry. Materials Circular Economy, 3(1), 1-9.
  • 3. Uluçay, A., Ceyhan, G., Balcı, O., Işık, C. & Yavuz, S. (2024). Investigation of dyestuff recycled from wastewater containing indigo/sulfur dyes. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(4), 969-978.
  • 4. Basyigit, Z.O., Kut, D. & Hauser, P. (2020). Development of multifunctional cotton fabric via chemical foam application method. Textile Research Journal, 90(9-10), 991-1001.
  • 5. Omerogullari Basyigit, Z. (2021). Application technologies for functional finishing of textile materials. İçinde Textiles for Functional Applications (1-21). IntechOpen.
  • 6. Yavuz, S. & Balci, O. (2024). Pamuklu ipliklerin köpük aplikasyon metodu kullanılarak indigo boyarmadde ile boyanması dyeing of cotton yarns with indigo dyestuff using the foam application method abstract. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 39(2), 515-526.
  • 7. Tapanyiğit, E.B., Pektaş, K., Özdemi̇r, M. & Balci, O. (2022). Farklı dokusuz yüzeyler üzerinde çözelti üfleme eğirme tekniği ile poliamid 6.6 esaslı nano lif eldesi ve araç kabin filtreleri için uygunluğunun araştırılması. Tekstil ve Mühendis, 29(127), 116-124.
  • 8. Gao, Y., Zhang, J., Su, Y., Wang, H., Wang, X.X., Huang, L.P. & Long, Y.Z. (2021). Recent progress and challenges in solution blow spinning. Materials Horizons, 8(2), 426-446.
  • 9. Silva, M.J., Dias, Y.J. & Yarin, A.L. (2023). Electrically-assisted supersonic solution blowing and solution blow spinning of fibrous materials from natural rubber extracted from havea brasilienses. Industrial Crops and Products, 192(October 2022), 116101.
  • 10. Medeiros, E.S., Glenn, G.M., Klamczynski, A.P., Orts, W.J. & Mattoso, L.H.C. (2009). Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. Journal of Applied Polymer Science, 113(4), 2322-2330.
  • 11. Sinha-Ray, S., Sinha-Ray, S., Yarin, A.L. & Pourdeyhimi, B. (2015). Application of solution-blown 20-50nm nanofibers in filtration of nanoparticles: The efficient van der waals collectors. Journal of Membrane Science, 485, 132-150.
  • 12. Khan, M.K.R. & Hassan, M.N. (2021). Solution blow spinning (SBS): A promising spinning system for submicron/nanofibre production. Textile & Leather Review, 4(3), 181-200.
  • 13. Liu, Y., Zhang, G., Zhuang, X., Li, S., Shi, L., Kang, W. & Xu, X. (2019). Solution blown nylon 6 nanofibrous membrane as scaffold for nanofiltration. Polymers, 11(2), 1-15.
  • 14. Dirany, Z., González-Benito, J., Ginatta, P., Nguewa, P. & González-Gaitano, G. (2025). Solution blow spun polymeric nanofibres embedding cyclodextrin complexes of miltefosine: An approach to the production of sprayable dressings for the treatment of cutaneous leishmaniasis. Carbohydrate Polymers, 353(September 2024), 123173.
  • 15. Rossi, P.F., dos Santos, D.M., Marangon, C.A., Teodoro, K.B.R., Costa, C.S., Inada, N.M. & Oréfice, R.L. (2025). Biobased composite fibrous membrane using PLA and lignin carbon dots fabricated via solution blow spinning for wound dressing application. Materials Today Communications, 42(November 2024), 111418.
  • 16. Gao, Q., Zhu, S., Huang, Y., Wen, C., Zhang, Z., Yang, F. & Feng, Y. (2024). Fast sweat wicking enabled by unidirectional water transport in biodegradable trilayered porous membranes produced via papermaking. ACS Sustainable Chemistry and Engineering, 12(21), 8041-8050.
  • 17. Zaman, M., Liu, H., Xiao, H., Chibante, F. & Ni, Y. (2013). Hydrophilic modification of polyester fabric by applying nanocrystalline cellulose containing surface finish. Carbohydrate Polymers, 91(2), 560-567.
  • 18. Shi, W., Pei, L., Gu, X. & Wang, J. (2023). Investigation on decontamination mechanism of moisture-wicking fabrics during home laundry. Journal of Surfactants and Detergents, 26(5), 693-702.
  • 19. Akinci, F.C., Kaynak, H.K. & Korkmaz, Y. (2018). Effects of filament fineness and weft sett on the permeability properties of microfilament woven fabrics. Tekstil ve Muhendis, 25(111), 234-240.
  • 20. Mazloompour, M., Ansari, N. & Hemmatinejad, N. (2007). Wetting behaviour of raw and water-repellent cotton fabrics using wetting kinetic measurements. Indian Journal of Fibre and Textile Research, 32(1), 93-98.
  • 21. Simile, C.B. (2004). Critical evaluation of wicking in performance fabrics. Georgia Institute of Technology, Master of Science in the School of Polymer, Textile, and Fiber Engineering.
  • 22. Chowdhury, M.J. & Nasrin, S. (2017). Effect of performance finish on woven fabric properties. International Journal of Scientific and Research Publications, 7(7), 814.
  • 23. Chowdhury, K.P., (2018). Effect of special finishes on the functional properties of cotton fabrics. Journal of Textile Science and Technology, 04(02), 49-66.
  • 24. Ho, L.Y. & Kan, C.W. (2022). Effect of resin finishing on some properties of 100% cotton light weight woven fabric. Coatings, 12(11).
  • 25. Cay, A., Tarakcioǧlu, I. & Hepbasli, A. (2009). A study on the exergetic analysis of continuous textile dryers. International Journal of Exergy, 6(3), 422-439.
  • 26. Raafi, S.M. & Fatema, U.K. (2021). Implementation of pre-heating system in stenters for improving machine performance and increasing efficiency. Journal of Textile Science and Technology, 07(04), 143-151.
  • 27. Wei, Y., Gong, R.H., Ning, L. & Ding, X. (2018). Enhancing the energy efficiency of domestic dryer by drying process optimization. Drying Technology, 36(7), 790-803.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tekstil Bilimi, Tekstil Kimyası, Tekstil Terbiyesi
Bölüm Makaleler
Yazarlar

Koray Pektaş 0000-0002-9744-8308

Onur Balcı 0000-0001-6885-7391

Proje Numarası 3191059
Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 16 Temmuz 2025
Kabul Tarihi 4 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Pektaş, K., & Balcı, O. (2025). Çözelti Üfleme Tekniği ile Farklı Bitim İşlemi Kimyasallarının Tekstil Yüzeylerine Aktarılması ve Performanslarının Değerlendirilmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(3), 617-626. https://doi.org/10.21605/cukurovaumfd.1744255