Araştırma Makalesi
BibTex RIS Kaynak Göster

Python Kullanılarak Clarke ve Park Dönüşümlerini Görselleştirme Yazılımının Geliştirilmesi

Yıl 2025, Cilt: 40 Sayı: 3, 607 - 616, 26.09.2025
https://doi.org/10.21605/cukurovaumfd.1757054

Öz

Üç fazlı elektrik sistemleri birçok endüstriyel uygulamada yaygın olarak kullanılmaktadır. Özellikle iletim ve dağıtım hatlarında ve asenkron motorların çalışmasında kullanılırlar. Yaygın kullanımlarına rağmen üç fazlı elektrik sistemlerinin zamana bağlı parametrelerden dolayı modellenmesi ve analizi zordur. Bu zorlukların üstesinden gelmek için Clarke ve Park dönüşümleri gibi bazı matematiksel yöntemler kullanılır. Bu çalışmada, Clarke ve Park dönüşümlerinin anlaşılmasını kolaylaştırmak için yazılım programı geliştirilmiştir. Uygulama, voltaj, frekans ve faz parametrelerinin değiştirilmesinin Clarke ve Park dönüşümleri üzerindeki etkilerini göstermektedir. Geliştirilen programda, kullanıcılar 3 fazlı (ABC) eksenden 2 fazlı (αβ) eksene, 2 fazlı (αβ) eksenden referans (dq) eksenine dönüşüm yapabilmektedirler. Dönüşüm sırasında, tek bir parametre girişi ile, üç ayrı dizi görselleştirilerek, her eksen için tekrarlanan parametre girişi ihtiyacı ortadan kaldırılmıştır. Uygulamanın matematiksel modellemesi ve kullanıcı arayüzü Python programlama dili kullanılarak geliştirilmiştir.

Kaynakça

  • 1. Du, Z., Yang, L., Zhang, D., Cui, T., He, X., Xiao, T., Xing, S., Xie, C. & Li, H. (2023). Development and testing of a motor drive and control unit based on the field-oriented control algorithm for the seed-metering device. Elsevier: Computers and Electronics in Agriculture, 211, 108024.
  • 2. Ling, L., Huang, S. D., Cao, G. Z. & Qiu, H. (2023). Comparison analysis on control-increment-based and control-quantity-based predictive controls of permanent magnet synchronous motors. International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Wuhan, China, 1-6.
  • 3. Lin, H., Hu, B., Li, F., Chen, J., Si, L., Zhou, X., Li, Y., Chen, J., Yan, M. & Dong, Y. (2018). A fault-tolerant two-permanent magnet synchronous motor drive with field-oriented control scheme. 2nd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China, 1029-1033.
  • 4. O’Rourke, C.J., Qasim, M.M., Overlin, M.R. & Kirtley, J.L. (2019). A geometric interpretation of reference frames and transformations: dq0, Clarke, and Park. Transactions on Energy Conversion, 34(4), 2070-2083.
  • 5. Casado-Machado, F., Martinez-Ramos, J.L., Barragán-Villarejo, M., Maza-Ortega J.M. & Rosendo-Macías, J.A. (2020). Reduced reference frame transform: Deconstructing three-phase four-wire systems. In IEEE Access, 8, 143021-143032.
  • 6. Carugatia, I., Orallo, C.M., Maestri, S., Donato, P.G. & Carrica, D. (2015). Error analysis of phase detector based on Clarke transform and arctangent function in polluted grids. Elsevier: Electric Power Systems Research, 127, 160-164.
  • 7. Velpula, R., Nagarajan, M. & Pitchaimuthu, R. (2024). An alternate method to detect and classify the transmission line faults using Clarke’s transformed currents. Elsevier: Electric Power Systems Research, 236, 110899.
  • 8. Tayyebi, A., Zhang, W., Huang, X., Jiang, W., Bormann, D. & Mats Larsson, M. (2024). A generalized time-domain framework for modeling and analysis of the unbalanced three-phase systems. Elsevier: Electric Power Systems Research, 235, 110809.
  • 9. Dashti, R., Daisy, M., Javadi, S. & Aliabadi, M.H. (2021). Proposing a new method to improve the longitudinal differential relay performance using the Clarke transformation: Theory, simulation, and experiment. Elsevier: Measurement, 168, 108450.
  • 10. Nustes, J.C., Pau, D.P. & Gruosso, G. (2023). Field oriented control dataset of a 3-phase permanent magnet synchronous motor. Elsevier: Data in Brief, 47, 109002.
  • 11. Xie, P., Li, G., Xie, F., Hu, C. & Qi, X., (2015). Research on field-weakening control of induction motor based on torque current component of the voltage closed-loop. 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 1618-1621.
  • 12. Goswami, V.M. & Vakharia, K. (2019). High performance induction machine drive using rotor field oriented control. International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 559-564.
  • 13. Ghassani, R., Kader, Z., Fadel, M., Combes, P. & Koteich, M. (2023). Comparison study of rotor field-oriented control and stator field-oriented control in permanent magnet synchronous motors. International Electric Machines & Drives Conference (IEMDC), San Francisco, CA, USA, 1-7.
  • 14. Xie, P., Li, G., Xie, F., Hu, C. & Qi, X. (2015). Research on field-weakening control of induction motor based on torque current component of the voltage closed-loop. 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 1618-1621.
  • 15. Megrini, M., Gaga, A., Mehdaoui, Y. & Khyat, J. (2024). Design and PIL test of extended Kalman filter for PMSM field-oriented control. Elsevier: Results in Engineering, 24, 102843.
  • 16. Wang, J. & He, J. (2008). Torque and flux direct backstepping control of induction motor. 7th World Congress on Intelligent Control and Automation, Chongqing, China, 6407-6410.
  • 17. Ludtke, I. & Jayne, M.G., (1995). Direct torque control of induction motors. Colloquium on Vector Control and Direct Torque Control of Induction Motors, London, UK, 6/1-6/6.
  • 18. Özgür, H.E., Özbek, N.S. & Sarıgeçili, M.İ. (2022). Noise and disturbance rejection performance evaluation on explicit model predictive control technique applied to inverted pendulum with various test scenarios. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(3), 643-652.
  • 19. Kumar, M., Tiwari, S., Kumar, V., Sampathi S.J. & Jarial, R.K. (2024). Implementation of field-oriented control (FOC) algorithm for brushless DC (BLDC) motor speed regulation. Second International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), Kurukshetra, India, 1-6.
  • 20. Tahmaz, O., Ekim, M.N. & Yildiz, A.B. (2020). Vector control of permanent magnet synchronous motor by a two-level SPWM inverter. 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 1-7.
  • 21. Alruim Alhasan, H. ve Güneş, M. (2017). Yeni bir adaptif parçacık sürü optimizasyon algoritması kullanarak DC motor için mz ayarlamalı PID kontrolör tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 243-250.
  • 22. Nos, O.V. & Nos, N.I. (2023). Clarke-Park coordinates transformation in the quaternion domain. IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, Russian Federation, 420-423.
  • 23. Liu, H., Tang, Y., Feng, Y. & Ma, X. (2008). A power quality disturbance classification method based on Park transform and Clarke transform analysis. 3rd International Conference on Innovative Computing Information and Control, Dalian, China, 524-524.
  • 24. Hoang, T.T. & Nair, N.-K.C. (2023). Advanced approach for stability assessment of PHIL setups coupled by Clarke-Park transform. Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 1-5.
  • 25. Dell'Olmo, J., Gatta, F., Geri, A., Graziani, M., Lauria, S. & Maccioni, M. (2022). Clarke transform based fast assessment of switching overvoltages in an MV distribution network. Elsevier: Electric Power Systems Research, 212, 108255.
  • 26. Vasavi, S., Nikhita Sri, P.D.L. & Sai Krishna, P.V. (2024). GUI-enabled boundary regularization system for urban buildings using the tkinter. 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), Dehradun, India, 424-429.
  • 27. Charan Sai, P., Karthik, K., Bhargav Prasad, K., Pranav, C.V.S. & Divya, K.V. (2024). Real-time task manager: A python-based approach using psutil and tkinter. 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 1-6.
  • 28. Spencer, M., Sheiati, S. & Chen, X. (2023). AQUADAGUI: A graphical user interface for automated quantification of damages in composite structures under fatigue loading using computer vision and thermography. Elsevier: SoftwareX, 22, 101392.
  • 29. Yoon, G. & Rho, J. (2021). MAXIM: Metasurfaces-oriented electromagnetic wave simulation software with intuitive graphical user interfaces. Elsevier: Computer Physics Communications, 264, 107846.

Development of Clarke and Park Transforms Visualization Software Using Python

Yıl 2025, Cilt: 40 Sayı: 3, 607 - 616, 26.09.2025
https://doi.org/10.21605/cukurovaumfd.1757054

Öz

Three-phase electrical systems are commonly utilized in many industrial applications. In particular, they are used in transmission and distribution lines, as well as in the operation of asynchronous motors. Despite their widespread use, three-phase electrical systems are challenging to model and analyze because of the time-depending parameters. In order to overcome these challenges, some mathematical methods such as Clarke and Park transforms are performed. In this study, to ease the understanding of Clarke and Park transforms, a software application is developed. The application demonstrates the effects of changing the voltage, frequency, and phase parameters on the Clarke and Park transforms. In the proposed application, users can convert 3-phase (ABC) axes to 2-phase (αβ) axes, 2-phase (αβ) axes to reference (dq) axes. Application can also convert 2-phase axes to 3-phase axes with the inverse Clarke and Park transforms. During the transformation, it visualizes three separate sequences with a single parameter input, eliminating the need for repeated parameter input for each axis. Mathematical modelling and user interface development of the application are performed in Python programming language.

Kaynakça

  • 1. Du, Z., Yang, L., Zhang, D., Cui, T., He, X., Xiao, T., Xing, S., Xie, C. & Li, H. (2023). Development and testing of a motor drive and control unit based on the field-oriented control algorithm for the seed-metering device. Elsevier: Computers and Electronics in Agriculture, 211, 108024.
  • 2. Ling, L., Huang, S. D., Cao, G. Z. & Qiu, H. (2023). Comparison analysis on control-increment-based and control-quantity-based predictive controls of permanent magnet synchronous motors. International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Wuhan, China, 1-6.
  • 3. Lin, H., Hu, B., Li, F., Chen, J., Si, L., Zhou, X., Li, Y., Chen, J., Yan, M. & Dong, Y. (2018). A fault-tolerant two-permanent magnet synchronous motor drive with field-oriented control scheme. 2nd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China, 1029-1033.
  • 4. O’Rourke, C.J., Qasim, M.M., Overlin, M.R. & Kirtley, J.L. (2019). A geometric interpretation of reference frames and transformations: dq0, Clarke, and Park. Transactions on Energy Conversion, 34(4), 2070-2083.
  • 5. Casado-Machado, F., Martinez-Ramos, J.L., Barragán-Villarejo, M., Maza-Ortega J.M. & Rosendo-Macías, J.A. (2020). Reduced reference frame transform: Deconstructing three-phase four-wire systems. In IEEE Access, 8, 143021-143032.
  • 6. Carugatia, I., Orallo, C.M., Maestri, S., Donato, P.G. & Carrica, D. (2015). Error analysis of phase detector based on Clarke transform and arctangent function in polluted grids. Elsevier: Electric Power Systems Research, 127, 160-164.
  • 7. Velpula, R., Nagarajan, M. & Pitchaimuthu, R. (2024). An alternate method to detect and classify the transmission line faults using Clarke’s transformed currents. Elsevier: Electric Power Systems Research, 236, 110899.
  • 8. Tayyebi, A., Zhang, W., Huang, X., Jiang, W., Bormann, D. & Mats Larsson, M. (2024). A generalized time-domain framework for modeling and analysis of the unbalanced three-phase systems. Elsevier: Electric Power Systems Research, 235, 110809.
  • 9. Dashti, R., Daisy, M., Javadi, S. & Aliabadi, M.H. (2021). Proposing a new method to improve the longitudinal differential relay performance using the Clarke transformation: Theory, simulation, and experiment. Elsevier: Measurement, 168, 108450.
  • 10. Nustes, J.C., Pau, D.P. & Gruosso, G. (2023). Field oriented control dataset of a 3-phase permanent magnet synchronous motor. Elsevier: Data in Brief, 47, 109002.
  • 11. Xie, P., Li, G., Xie, F., Hu, C. & Qi, X., (2015). Research on field-weakening control of induction motor based on torque current component of the voltage closed-loop. 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 1618-1621.
  • 12. Goswami, V.M. & Vakharia, K. (2019). High performance induction machine drive using rotor field oriented control. International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 559-564.
  • 13. Ghassani, R., Kader, Z., Fadel, M., Combes, P. & Koteich, M. (2023). Comparison study of rotor field-oriented control and stator field-oriented control in permanent magnet synchronous motors. International Electric Machines & Drives Conference (IEMDC), San Francisco, CA, USA, 1-7.
  • 14. Xie, P., Li, G., Xie, F., Hu, C. & Qi, X. (2015). Research on field-weakening control of induction motor based on torque current component of the voltage closed-loop. 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 1618-1621.
  • 15. Megrini, M., Gaga, A., Mehdaoui, Y. & Khyat, J. (2024). Design and PIL test of extended Kalman filter for PMSM field-oriented control. Elsevier: Results in Engineering, 24, 102843.
  • 16. Wang, J. & He, J. (2008). Torque and flux direct backstepping control of induction motor. 7th World Congress on Intelligent Control and Automation, Chongqing, China, 6407-6410.
  • 17. Ludtke, I. & Jayne, M.G., (1995). Direct torque control of induction motors. Colloquium on Vector Control and Direct Torque Control of Induction Motors, London, UK, 6/1-6/6.
  • 18. Özgür, H.E., Özbek, N.S. & Sarıgeçili, M.İ. (2022). Noise and disturbance rejection performance evaluation on explicit model predictive control technique applied to inverted pendulum with various test scenarios. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(3), 643-652.
  • 19. Kumar, M., Tiwari, S., Kumar, V., Sampathi S.J. & Jarial, R.K. (2024). Implementation of field-oriented control (FOC) algorithm for brushless DC (BLDC) motor speed regulation. Second International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), Kurukshetra, India, 1-6.
  • 20. Tahmaz, O., Ekim, M.N. & Yildiz, A.B. (2020). Vector control of permanent magnet synchronous motor by a two-level SPWM inverter. 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 1-7.
  • 21. Alruim Alhasan, H. ve Güneş, M. (2017). Yeni bir adaptif parçacık sürü optimizasyon algoritması kullanarak DC motor için mz ayarlamalı PID kontrolör tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 243-250.
  • 22. Nos, O.V. & Nos, N.I. (2023). Clarke-Park coordinates transformation in the quaternion domain. IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, Russian Federation, 420-423.
  • 23. Liu, H., Tang, Y., Feng, Y. & Ma, X. (2008). A power quality disturbance classification method based on Park transform and Clarke transform analysis. 3rd International Conference on Innovative Computing Information and Control, Dalian, China, 524-524.
  • 24. Hoang, T.T. & Nair, N.-K.C. (2023). Advanced approach for stability assessment of PHIL setups coupled by Clarke-Park transform. Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 1-5.
  • 25. Dell'Olmo, J., Gatta, F., Geri, A., Graziani, M., Lauria, S. & Maccioni, M. (2022). Clarke transform based fast assessment of switching overvoltages in an MV distribution network. Elsevier: Electric Power Systems Research, 212, 108255.
  • 26. Vasavi, S., Nikhita Sri, P.D.L. & Sai Krishna, P.V. (2024). GUI-enabled boundary regularization system for urban buildings using the tkinter. 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), Dehradun, India, 424-429.
  • 27. Charan Sai, P., Karthik, K., Bhargav Prasad, K., Pranav, C.V.S. & Divya, K.V. (2024). Real-time task manager: A python-based approach using psutil and tkinter. 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 1-6.
  • 28. Spencer, M., Sheiati, S. & Chen, X. (2023). AQUADAGUI: A graphical user interface for automated quantification of damages in composite structures under fatigue loading using computer vision and thermography. Elsevier: SoftwareX, 22, 101392.
  • 29. Yoon, G. & Rho, J. (2021). MAXIM: Metasurfaces-oriented electromagnetic wave simulation software with intuitive graphical user interfaces. Elsevier: Computer Physics Communications, 264, 107846.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Makineleri ve Sürücüler, Güç Elektroniği
Bölüm Makaleler
Yazarlar

Oğuzhan Timur 0000-0002-6537-7840

Kadir Sami Poyraz 0009-0009-2422-1303

Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 2 Ağustos 2025
Kabul Tarihi 26 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Timur, O., & Poyraz, K. S. (2025). Development of Clarke and Park Transforms Visualization Software Using Python. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(3), 607-616. https://doi.org/10.21605/cukurovaumfd.1757054