Araştırma Makalesi
BibTex RIS Kaynak Göster

Runge-Kutta optimizasyon algoritması kullanılarak elektrikli araç bileşenlerinin yapısal tasarımı

Yıl 2025, Cilt: 40 Sayı: 3, 699 - 706, 26.09.2025
https://doi.org/10.21605/cukurovaumfd.1770296

Öz

Bu araştırma, gelişmiş yapısal optimizasyon teknikleri, özellikle topoloji ve şekil optimizasyonu kullanılarak bir elektrikli otomobil batarya paketi muhafaza profili optimizasyonuna odaklanmaktadır. Şekil optimizasyonu aşamasında, izin verilen gerilme kısıtlamalarını ihlal etmeden bileşenin ağırlığını en aza indirmek için yeni geliştirilen Runge-Kutta optimizasyon algoritması (RKOA) uygulanmıştır. Hedef ve kısıt fonksiyonlarını doğru bir şekilde modellemek için yapay sinir ağı (ANN) vekil modelleme yöntemi kullanılmıştır. Bulgular, RKOA'nın Harris Hawks algoritmasına kıyasla daha iyi optimizasyon sonuçları verdiğini ve hafif ve yapısal olarak sağlam bir elektrikli araç batarya paketi muhafaza kutusu tasarımı elde etmede etkinliğini gösterdiğini ortaya koymaktadır.

Kaynakça

  • 1. Belingardi, G. & Scattina, A. (2023). Battery pack and underbody: integration in the structure design for battery electric vehicles-challenges and solutions. Vehicles, 5(2), 498-514.
  • 2. Liu, Q., Lin, Y., Zong, Z., Sun, G. & Li, Q. (2013). Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Composite Structures, 97, 231-238.
  • 3. Zhang, J., Ning, L., Hao, Y. & Sang, T. (2021). Topology optimization for crashworthiness and structural design of a battery electric vehicle. International Journal of Crashworthiness, 26(6), 651-660.
  • 4. Acar, E., Jain, N., Ramu, P., Hwang, C. & Lee, I. (2024). A survey on design optimization of battery electric vehicle components, systems, and management. Structural and Multidisciplinary Optimization, 67(3), 27.
  • 5. Roper, S.W.K. & Kim, I.Y. (2023). Integrated topology and packaging optimization for conceptual-level electric vehicle chassis design via the component-existence method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(9), 2118-2131.
  • 6. Yu, L., Gu, X., Qian, L., Jiang, P., Wang, W. & Yu, M. (2021). Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight. Thin-Walled Structures, 161, 107410.
  • 7. Li, C. & Kim, I.Y. (2015). Topology, size and shape optimization of an automotive cross car beam, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(10), 1361-1378.
  • 8. Kim, J., Kim, J.J. & Jang, I.G. (2022). Integrated topology and shape optimization of the five-spoke steel wheel to improve the natural frequency. Structural and Multidisciplinary Optimization, 65(3), 78.
  • 9. Grujicic, M., Arakere, G., Pisu, P., Ayalew, B., Seyr, N., Erdmann, M. & Holzleitner, J. (2008). Application of topology, size and shape optimization methods in polymer metal hybrid structural lightweight engineering. Multidiscipline modeling in Materials and Structures, 4(4), 305-330.
  • 10. Mirjalili, S. (2015). The ant lion optimizer. Advances in engineering software, 83, 80-98.
  • 11. Miao, Y., Fadel, G.M. & Gantovnik, V.B. (2008). Vehicle configuration design with a packing genetic algorithm. International Journal of Heavy Vehicle Systems, 15(2-4), 433-448.
  • 12. Montazeri-Gh, M. & Poursamad, A. (2006). Application of genetic algorithm for simultaneous optimisation of HEV component sizing and control strategy. International Journal of Alternative Propulsion, 1(1), 63-78.
  • 13. Li, Z., Pourmehrab, M., Elefteriadou, L. & Ranka, S. (2018). Intersection control optimization for automated vehicles using genetic algorithm. Journal of Transportation Engineering, Part A: Systems, 144(12), 04018074.
  • 14. Hui, S. (2010). Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm. Engineering Applications of Artificial Intelligence, 23(1), 27-33.
  • 15. Lu, X., Wu, Y., Lian, J., Zhang, Y., Chen, C., Wang, P. & Meng, L. (2020). Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Conversion and Management, 205, 112474.
  • 16. Ahmadianfar, I., Heidari, A.A., Gandomi, A.H., Chu, X. & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
  • 17. Pınarbaşı, A., Külekçi, M.K., Boğa, C. & Eşme, U. (2020). Optimization of the effect of processing parameters on surface roughness and cutting energy in CNC Milling of Al-7075 material. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(2), 345-356.
  • 18. Alhasan, H.A. & Güneş, M. (2017). Yeni bir adaptif parçacık sürü optimizasyon algoritması kullanarak DC motor için öz ayarlamalı PID kontrolör tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 243-250.
  • 19. Ulukök, M.K. (2023). Çift-girişim tabanlı iyileştirme algoritmasının sayısal iyileştirme fonksiyonları üzerinde performans analizi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 545-552.
  • 20. Keleş, M.K. & Keleş, A.E. (2017). Veri madenciliği uygulamalarının ve sezgisel optimizasyon algoritmalarının yapım yönetimindeki yeri. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(1), 235-242.

Structural design of the electric vehicle components using Runge-Kutta optimization algorithm

Yıl 2025, Cilt: 40 Sayı: 3, 699 - 706, 26.09.2025
https://doi.org/10.21605/cukurovaumfd.1770296

Öz

This research focuses on the optimization of a battery pack housing profile of an electric vehicle using advanced structural optimization techniques, specifically topology and shape optimization. The newly developed Runge-Kutta optimization algorithm(RKOA) was applied to minimize the component's weight without violating allowable stress constraints for the shape optimization phase. The artificial neural network (ANN) surrogate modeling method was employed to model the objective and constraint functions accurately. The findings indicate that RKOA delivers improved optimization results compared to the Harris Hawks algorithm, demonstrating its effectiveness in achieving an electric vehicle design's lightweight and structurally sound battery pack housing profile.

Kaynakça

  • 1. Belingardi, G. & Scattina, A. (2023). Battery pack and underbody: integration in the structure design for battery electric vehicles-challenges and solutions. Vehicles, 5(2), 498-514.
  • 2. Liu, Q., Lin, Y., Zong, Z., Sun, G. & Li, Q. (2013). Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Composite Structures, 97, 231-238.
  • 3. Zhang, J., Ning, L., Hao, Y. & Sang, T. (2021). Topology optimization for crashworthiness and structural design of a battery electric vehicle. International Journal of Crashworthiness, 26(6), 651-660.
  • 4. Acar, E., Jain, N., Ramu, P., Hwang, C. & Lee, I. (2024). A survey on design optimization of battery electric vehicle components, systems, and management. Structural and Multidisciplinary Optimization, 67(3), 27.
  • 5. Roper, S.W.K. & Kim, I.Y. (2023). Integrated topology and packaging optimization for conceptual-level electric vehicle chassis design via the component-existence method. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(9), 2118-2131.
  • 6. Yu, L., Gu, X., Qian, L., Jiang, P., Wang, W. & Yu, M. (2021). Application of tailor rolled blanks in optimum design of pure electric vehicle crashworthiness and lightweight. Thin-Walled Structures, 161, 107410.
  • 7. Li, C. & Kim, I.Y. (2015). Topology, size and shape optimization of an automotive cross car beam, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(10), 1361-1378.
  • 8. Kim, J., Kim, J.J. & Jang, I.G. (2022). Integrated topology and shape optimization of the five-spoke steel wheel to improve the natural frequency. Structural and Multidisciplinary Optimization, 65(3), 78.
  • 9. Grujicic, M., Arakere, G., Pisu, P., Ayalew, B., Seyr, N., Erdmann, M. & Holzleitner, J. (2008). Application of topology, size and shape optimization methods in polymer metal hybrid structural lightweight engineering. Multidiscipline modeling in Materials and Structures, 4(4), 305-330.
  • 10. Mirjalili, S. (2015). The ant lion optimizer. Advances in engineering software, 83, 80-98.
  • 11. Miao, Y., Fadel, G.M. & Gantovnik, V.B. (2008). Vehicle configuration design with a packing genetic algorithm. International Journal of Heavy Vehicle Systems, 15(2-4), 433-448.
  • 12. Montazeri-Gh, M. & Poursamad, A. (2006). Application of genetic algorithm for simultaneous optimisation of HEV component sizing and control strategy. International Journal of Alternative Propulsion, 1(1), 63-78.
  • 13. Li, Z., Pourmehrab, M., Elefteriadou, L. & Ranka, S. (2018). Intersection control optimization for automated vehicles using genetic algorithm. Journal of Transportation Engineering, Part A: Systems, 144(12), 04018074.
  • 14. Hui, S. (2010). Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm. Engineering Applications of Artificial Intelligence, 23(1), 27-33.
  • 15. Lu, X., Wu, Y., Lian, J., Zhang, Y., Chen, C., Wang, P. & Meng, L. (2020). Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Conversion and Management, 205, 112474.
  • 16. Ahmadianfar, I., Heidari, A.A., Gandomi, A.H., Chu, X. & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.
  • 17. Pınarbaşı, A., Külekçi, M.K., Boğa, C. & Eşme, U. (2020). Optimization of the effect of processing parameters on surface roughness and cutting energy in CNC Milling of Al-7075 material. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(2), 345-356.
  • 18. Alhasan, H.A. & Güneş, M. (2017). Yeni bir adaptif parçacık sürü optimizasyon algoritması kullanarak DC motor için öz ayarlamalı PID kontrolör tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 243-250.
  • 19. Ulukök, M.K. (2023). Çift-girişim tabanlı iyileştirme algoritmasının sayısal iyileştirme fonksiyonları üzerinde performans analizi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(2), 545-552.
  • 20. Keleş, M.K. & Keleş, A.E. (2017). Veri madenciliği uygulamalarının ve sezgisel optimizasyon algoritmalarının yapım yönetimindeki yeri. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(1), 235-242.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri
Bölüm Makaleler
Yazarlar

Dildar Gürses 0000-0002-1517-1692

Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 26 Ağustos 2025
Kabul Tarihi 23 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Gürses, D. (2025). Structural design of the electric vehicle components using Runge-Kutta optimization algorithm. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 40(3), 699-706. https://doi.org/10.21605/cukurovaumfd.1770296