Araştırma Makalesi
BibTex RIS Kaynak Göster

Functional Pressure and Density Sensor Design Based on Metamaterial Absorber

Yıl 2018, , 23 - 30, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.500512

Öz

In this study, metamaterial absorber based functional sensors were designed. After the design, air was integrated to the structure and integrated pressure sensor was designed. Similarly, arlon materials with different dielectric constants were integrated to the MTM structure. With the integrated structures created, density sensor designs were obtained. It was observed from the calculations that the proposed MTM absorber has a perfect absorbance value at a frequency of 5,2 GHz wireless communication frequency. With the integration of air layer, shifts at resonance frequency was occurred. This shows that the proposed structure can be used as a pressure sensor. Similarly, with the integration of different arlon materials, shifts at resonance frequencies were observed inversely proportional to density. These shifts show that the structure proposed secondarily can be used as a density sensor. It was observed that the MTM structures proposed can be used for the applications of pressure and density sensors.

Kaynakça

  • 1. Veselago, V.G., 1968. Electrodynamics of Media with Simultaneously Negative Electric Permittivity and Magnetic Permeability, Physics-Uspekhi 10(4), 509–14.
  • 2. Pendry, J., 1996. Extremely Low Frequency Plasmons in Metallic Microstructures, Phys. Rev. Lett. 76, 4773–6.
  • 3. Pendry, J.B., Holden, A., Robbins, D., Stewart, W., 1998. Low Frequency Plasmons in Thin Wire Structures, J. Phys. Condens. Matter 10(22), 4785.
  • 4. Pendry, J.B., 2000. Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85(18), 3966–9.
  • 5. Smith, D.R., Padilla. W.J., Vier. D.C., Nemat- Nasser, S.C., Schultz, S., 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett. 84(18), 4184–7.
  • 6. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K., 2004. Metamaterials and Negative Refractive Index, Science 305(5685),788–792.
  • 7. Sabah, C., 2008. Left-handed Chiral Metamaterials, Cent. Eur. J. Phys. 305(5685), 788–92.
  • 8. Dincer, F., Karaaslan, M., Colak, S., Tetik, E., Akgol, O., Altıntas, O., Sabah, C., 2016. Multiband Polarization İndependent Cylindrical Metamaterial Absorber and Sensor Application, Mod. Phys. Lett. B 30(8), 1650095.
  • 9. Bakır, M., Karaaslan, M., Dincer, F., Delihacıoğlu, K., Sabah, C., 2016. Tunable Perfect Metamaterial Absorber and Sensor Applications, Journal of Materials Science: Materials in Electronics 27(11), 12091–12099.
  • 10. Bakır, M., Karaaslan, M., Akgol, O., Altıntaş, O., Unal, E., Sabah, C., 2018. Sensory Applications of Resonator Based Metamaterial Absorber, Optik, 168, 741-746.
  • 11. Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2017. Implementation of a Perfect Metamaterial Absorber into Multi-functional Sensor Applications, Modern Physics Letters B, 31(15), 1750176.
  • 12. Delihacıoğlu, K., Karaaslan, M., Tetik, E., Ünal, E., Dinçer, F., Karadağ, F., 2013. Low Profile Antenna Radiation Enhancement with Novel Electromagnetic Band Gap Structures, IET Microwaves, Antennas Propag. 7(3), 215–21.
  • 13. Tetik, E., Tetik, G.D., 2017. The Effect of a Metamaterial Based Wearable Microstrip Patch Antenna on Human Body, Can. J. Phys. cjp- 2017-0755.
  • 14.Yan, S., Vandenbosch, G.A.E., 2016. Radiation Pattern-Reconfigurable Wearable Antenna Based on Metamaterial Structure, IEEE Antennas Wirel. Propag. Lett. 15, 1715–8.
  • 15. Aydin, K., Bulu, I., Ozbay, E., 2007. Subwavelength Resolution with a Negative- Index Metamaterial Superlens, Appl. Phys. Lett. 90(25).
  • 16. Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Bakir, M., Sabah, C., 2015. Tunable Perfect Metamaterial Absorber Design using the Golden Ratio and Energy Harvesting and Sensor Applications, J. Mater. Sci. Mater. Electron. 26(12), 9735-40.
  • 17. Zhong, H.T., Yang, X.X., Tan, C., Yu, K., 2016. Triple-band Polarization-insensitive and Wideangle Metamaterial Array for Electromagnetic Energy Harvesting, Appl. Phys. Lett. 109(25).
  • 18. Bağmancı, M., Karaaslan, M., Ünal, E., Akgol, O., Karadağ, F., Sabah, C., 2017. Broad-band Polarization-independent Metamaterial Absorber for Solar Energy Harvesting Applications, Phys. E Low-Dimensional Syst. Nanostructures 90, 1–6.
  • 19. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science 314(5801), 977-980.
  • 20. Akgol, O., Altintas, O, Dalkilinc, E.E., Unal, E., Karaaslan, M., Sabah, C., 2017. Metamaterial Absorber-based Multisensor Applications using a Meander-line Resonator Opt. Eng. 56(8).
  • 21. Ding, F., Cui, Y., Ge, X., Jin, Y., He, S., 2012. Ultra-broadband Microwave Metamaterial Absorber, Appl. Phys. Lett. 100(10).
  • 22. Hao, J., Wang, J., Liu, X., Padilla, W.J., Zhou, L., Qiu, M., 2010. High Performance Optical Absorber Based on a Plasmonic Metamaterial, Appl. Phys. Lett. 96(25).
  • 23. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J., 2008. Perfect Metamaterial Absorber, Phys. Rev. Lett. 100(20).
  • 24. Xu, W., Sonkusale, S., 2013. Microwave Diode Switchable Metamaterial Reflector/absorber, Appl. Phys. Lett. 103(3).
  • 25. Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., Taylor, A.J., 2009. A Metamaterial Solid-state Terahertz Phase Modulator, Nat. Photonics 3(3), 148–51.
  • 26. Ginn, J., Shelton, D., Krenz, P., Lail, B., Boreman, G., 2009. Altering İnfrared Metamaterial Performance Through Metal Resonance Damping, J. Appl. Phys. 105(7).
  • 27. Dincer, F., Karaaslan, M., Unal, E., Akgol, O., Sabah, C., 2015. Flexible Chiral Metamaterials with Dynamically Optical Activity and High Negative Refractive Index, Mod. Phys. Lett. B 29(18), 1550087.
  • 28. Tetik, E., 2017. An Overview of Metamaterial Researches, Researches on Science and Art in 21St Century Turkey, Gece Publishing 2, 1817–25.
  • 29. Boopathi, Rani, R., Pandey, S.K., 2017. Metamaterial-inspired Printed UWB Antenna for Short Range RADAR Applications, Microw. Opt. Technol. Lett. 59(7), 1600–4.
  • 30.Abdalla, M.A., Hu, Z., 2012. On the Study of Development of X Band Metamaterial Radar Absorber, Adv. Electromagn. 1(3), 94-98.
  • 31. Bagmanci, M., Karaaslan, M., Altintas, O., Karadag, F., Tetik, E., Bakir, M., 2018. Wideband Metamaterial Absorber Based on CRRs with Lumped Elements for Microwave Energy Harvesting, 52(1), 45-59.

Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç ve Yoğunluk Sensörü Tasarımı

Yıl 2018, , 23 - 30, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.500512

Öz

Bu çalışmada sinyal emici metamalzeme tabanlı fonksiyonel sensör tasarımı yapılmıştır. MTM yapı tasarlandıktan sonra, yapıya farklı kalınlıklarda hava entegre edilmiştir. Bu sayede entegre basınç sensör tasarımı oluşturulmuştur. Daha sonra benzer şekilde MTM yapıya farklı dielektrik sabitine sahip arlon yapılar entegre edilmiştir. Oluşturulan bu entegre yapı ile yoğunluk sensör tasarımı elde edilmiştir. Yapılan hesaplamalarda önerilen sinyal emici MTM 5,2 GHz kablosuz iletişim frekansında mükemmel emilime sahip olduğu görülmüştür. Bu yapıya hava katmanı eklendiğinde, rezonans frekansında kaymalar meydana gelmiştir. Bu önerilen yapının basınç sensörü olarak kullanabileceğini göstermektedir. Benzer şekilde farklı arlon malzemeler eklendiği zaman ise yoğunluk ile ters orantılı olarak rezonans frekansında yine kaymanlar oluşmuştur. Frekansta meydana gelen bu kaymalar önerilen ikinci yapının yoğunluk sensörü olarak kullanabileceğini göstermektedir. Böylece önerilen MTM yapının basınç ve yoğunluk sensörünün gerekli olduğu bir çok uygulamada kullanılabileceği gözlenmiştir.

Kaynakça

  • 1. Veselago, V.G., 1968. Electrodynamics of Media with Simultaneously Negative Electric Permittivity and Magnetic Permeability, Physics-Uspekhi 10(4), 509–14.
  • 2. Pendry, J., 1996. Extremely Low Frequency Plasmons in Metallic Microstructures, Phys. Rev. Lett. 76, 4773–6.
  • 3. Pendry, J.B., Holden, A., Robbins, D., Stewart, W., 1998. Low Frequency Plasmons in Thin Wire Structures, J. Phys. Condens. Matter 10(22), 4785.
  • 4. Pendry, J.B., 2000. Negative Refraction Makes a Perfect Lens, Phys. Rev. Lett. 85(18), 3966–9.
  • 5. Smith, D.R., Padilla. W.J., Vier. D.C., Nemat- Nasser, S.C., Schultz, S., 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity, Phys. Rev. Lett. 84(18), 4184–7.
  • 6. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K., 2004. Metamaterials and Negative Refractive Index, Science 305(5685),788–792.
  • 7. Sabah, C., 2008. Left-handed Chiral Metamaterials, Cent. Eur. J. Phys. 305(5685), 788–92.
  • 8. Dincer, F., Karaaslan, M., Colak, S., Tetik, E., Akgol, O., Altıntas, O., Sabah, C., 2016. Multiband Polarization İndependent Cylindrical Metamaterial Absorber and Sensor Application, Mod. Phys. Lett. B 30(8), 1650095.
  • 9. Bakır, M., Karaaslan, M., Dincer, F., Delihacıoğlu, K., Sabah, C., 2016. Tunable Perfect Metamaterial Absorber and Sensor Applications, Journal of Materials Science: Materials in Electronics 27(11), 12091–12099.
  • 10. Bakır, M., Karaaslan, M., Akgol, O., Altıntaş, O., Unal, E., Sabah, C., 2018. Sensory Applications of Resonator Based Metamaterial Absorber, Optik, 168, 741-746.
  • 11. Akgol, O., Karaaslan, M., Unal, E., Sabah, C., 2017. Implementation of a Perfect Metamaterial Absorber into Multi-functional Sensor Applications, Modern Physics Letters B, 31(15), 1750176.
  • 12. Delihacıoğlu, K., Karaaslan, M., Tetik, E., Ünal, E., Dinçer, F., Karadağ, F., 2013. Low Profile Antenna Radiation Enhancement with Novel Electromagnetic Band Gap Structures, IET Microwaves, Antennas Propag. 7(3), 215–21.
  • 13. Tetik, E., Tetik, G.D., 2017. The Effect of a Metamaterial Based Wearable Microstrip Patch Antenna on Human Body, Can. J. Phys. cjp- 2017-0755.
  • 14.Yan, S., Vandenbosch, G.A.E., 2016. Radiation Pattern-Reconfigurable Wearable Antenna Based on Metamaterial Structure, IEEE Antennas Wirel. Propag. Lett. 15, 1715–8.
  • 15. Aydin, K., Bulu, I., Ozbay, E., 2007. Subwavelength Resolution with a Negative- Index Metamaterial Superlens, Appl. Phys. Lett. 90(25).
  • 16. Unal, E., Dincer, F., Tetik, E., Karaaslan, M., Bakir, M., Sabah, C., 2015. Tunable Perfect Metamaterial Absorber Design using the Golden Ratio and Energy Harvesting and Sensor Applications, J. Mater. Sci. Mater. Electron. 26(12), 9735-40.
  • 17. Zhong, H.T., Yang, X.X., Tan, C., Yu, K., 2016. Triple-band Polarization-insensitive and Wideangle Metamaterial Array for Electromagnetic Energy Harvesting, Appl. Phys. Lett. 109(25).
  • 18. Bağmancı, M., Karaaslan, M., Ünal, E., Akgol, O., Karadağ, F., Sabah, C., 2017. Broad-band Polarization-independent Metamaterial Absorber for Solar Energy Harvesting Applications, Phys. E Low-Dimensional Syst. Nanostructures 90, 1–6.
  • 19. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science 314(5801), 977-980.
  • 20. Akgol, O., Altintas, O, Dalkilinc, E.E., Unal, E., Karaaslan, M., Sabah, C., 2017. Metamaterial Absorber-based Multisensor Applications using a Meander-line Resonator Opt. Eng. 56(8).
  • 21. Ding, F., Cui, Y., Ge, X., Jin, Y., He, S., 2012. Ultra-broadband Microwave Metamaterial Absorber, Appl. Phys. Lett. 100(10).
  • 22. Hao, J., Wang, J., Liu, X., Padilla, W.J., Zhou, L., Qiu, M., 2010. High Performance Optical Absorber Based on a Plasmonic Metamaterial, Appl. Phys. Lett. 96(25).
  • 23. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J., 2008. Perfect Metamaterial Absorber, Phys. Rev. Lett. 100(20).
  • 24. Xu, W., Sonkusale, S., 2013. Microwave Diode Switchable Metamaterial Reflector/absorber, Appl. Phys. Lett. 103(3).
  • 25. Chen, H.T., Padilla, W.J., Cich, M.J., Azad, A.K., Averitt, R.D., Taylor, A.J., 2009. A Metamaterial Solid-state Terahertz Phase Modulator, Nat. Photonics 3(3), 148–51.
  • 26. Ginn, J., Shelton, D., Krenz, P., Lail, B., Boreman, G., 2009. Altering İnfrared Metamaterial Performance Through Metal Resonance Damping, J. Appl. Phys. 105(7).
  • 27. Dincer, F., Karaaslan, M., Unal, E., Akgol, O., Sabah, C., 2015. Flexible Chiral Metamaterials with Dynamically Optical Activity and High Negative Refractive Index, Mod. Phys. Lett. B 29(18), 1550087.
  • 28. Tetik, E., 2017. An Overview of Metamaterial Researches, Researches on Science and Art in 21St Century Turkey, Gece Publishing 2, 1817–25.
  • 29. Boopathi, Rani, R., Pandey, S.K., 2017. Metamaterial-inspired Printed UWB Antenna for Short Range RADAR Applications, Microw. Opt. Technol. Lett. 59(7), 1600–4.
  • 30.Abdalla, M.A., Hu, Z., 2012. On the Study of Development of X Band Metamaterial Radar Absorber, Adv. Electromagn. 1(3), 94-98.
  • 31. Bagmanci, M., Karaaslan, M., Altintas, O., Karadag, F., Tetik, E., Bakir, M., 2018. Wideband Metamaterial Absorber Based on CRRs with Lumped Elements for Microwave Energy Harvesting, 52(1), 45-59.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık, Mühendislik
Bölüm Makaleler
Yazarlar

Erkan Tetik

Utku Erdiven Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Tetik, E., & Erdiven, U. (2018). Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç ve Yoğunluk Sensörü Tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(3), 23-30. https://doi.org/10.21605/cukurovaummfd.500512
AMA Tetik E, Erdiven U. Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç ve Yoğunluk Sensörü Tasarımı. cukurovaummfd. Eylül 2018;33(3):23-30. doi:10.21605/cukurovaummfd.500512
Chicago Tetik, Erkan, ve Utku Erdiven. “Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç Ve Yoğunluk Sensörü Tasarımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, sy. 3 (Eylül 2018): 23-30. https://doi.org/10.21605/cukurovaummfd.500512.
EndNote Tetik E, Erdiven U (01 Eylül 2018) Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç ve Yoğunluk Sensörü Tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 3 23–30.
IEEE E. Tetik ve U. Erdiven, “Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç ve Yoğunluk Sensörü Tasarımı”, cukurovaummfd, c. 33, sy. 3, ss. 23–30, 2018, doi: 10.21605/cukurovaummfd.500512.
ISNAD Tetik, Erkan - Erdiven, Utku. “Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç Ve Yoğunluk Sensörü Tasarımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/3 (Eylül 2018), 23-30. https://doi.org/10.21605/cukurovaummfd.500512.
JAMA Tetik E, Erdiven U. Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç ve Yoğunluk Sensörü Tasarımı. cukurovaummfd. 2018;33:23–30.
MLA Tetik, Erkan ve Utku Erdiven. “Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç Ve Yoğunluk Sensörü Tasarımı”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2018, ss. 23-30, doi:10.21605/cukurovaummfd.500512.
Vancouver Tetik E, Erdiven U. Sinyal Emici Metamalzeme Tabanlı Fonksiyonel Basınç ve Yoğunluk Sensörü Tasarımı. cukurovaummfd. 2018;33(3):23-30.