Araştırma Makalesi
BibTex RIS Kaynak Göster

Fotovoltaik (FV) Teknolojileri, FV Modül Karakteristiği, Bağlantı Formları ve Standartların İncelenmesi

Yıl 2015, Cilt: 30 Sayı: 2, 137 - 150, 25.07.2016
https://doi.org/10.21605/cukurovaummfd.242770

Öz

Son yıllarda enerjinin etkin kullanımı, nüfus artışı ve sanayileşme ile birlikte hızla artan enerji talebine bağlı olarak çok önemli hale getirmiştir. Enerji kullanımında artan talebe paralel olarak dünya geneli enerji arzı çok büyük baskıya maruz kalmaktadır. Bu nedenle enerji verimliliği ve alternatif enerji kaynaklarının kullanılması çok önemli bir konu haline gelmiştir. Fotovoltaik sistemler (FV) en çok kullanılan alternatif enerji kaynakları arasında gösterilebilir ve bu teknoloji gün geçtikçe dikkat çekici popülerlik kazanmaktadır. Fakat, FV sistemler düşük verimlilik, yüksek kurulum maliyeti ve değişken atmosferik koşullardan negatif olarak etkilenmektedirler. Son zamanlarda çalışmalar kullanılan hammaddeleri modifiye ederek FV panellerin yapısal verimliliğini artırmak ve enerji verimliliği çözümleri sağlamak amacıyla genişletilmiştir. Bu yazıda FV hücre teknolojisi üzerine kullanılan hammadeler baz alınarak verimlilik, fiyat ve teknik özellikler açısından inceleme yapılması amaçlanmıştır. Öte yandan panel karakteristiği çıkarımı ve güç sistemlerinin benzetiminde kullanmak için PSCAD/EMTDC programı kullanılarak FV panel modeli sunulmuştur. Bu panel modeli hem şebeke bağlantılı FV sistemlerin hemde şebekeden bağımsız sistemlerin güç sistem dinamiği ve geçici durum analizi çıkarımı için uygundur. Ayrıca Türkiye için şebekeye bağlantı şartları ve baz alınan şartnamelerin detaylı incelenmesi.

Kaynakça

  • 1. Exposito A. G., Conejo A. J., Canizares C., 2009. Electric Energy Systems, CRC Press, 648 pages.
  • 2. Wurfel P., 2009. Physics of Solar Cells, WILEY-VCH, 244 pages . 3. Çelik Ö., 2015. A Novel Hybrid MPPT Method for Grid Connected Photovoltaic Systems with Partial Shading Conditions, MSc Thesis, Çukurova University, Institute of Natural and Applied Sciences, 130 pages.
  • 4. U.S. Energy Information Administration (EIA) http://www.eia.gov/renewable/annual/solar_p hoto/
  • 5. Liu Y., 2009. Advanced Control of Photovoltaic Converters, PhD Thesis, University of Leicester, Department of Engineering, 141 Pages.
  • 6. BP Statistical Review of World Energy 2014, 2014. http://www.bp.com/content/dam/bp/pdf /Energy-economics/statistical-review- 2014/BP-statistical-review-of-world-energy- 2014-full-report.pdf.
  • 7. Renewable Energy Policy Network for the 21st Century, 2014. Renewables 2014, Global Status Report, http://www.ren21.net/portals/0/documents/res ources/gsr/2014/gsr2014_full%20report_low %20res. Pdf.
  • 8. Sagbas A., Karamanlioglu T., 2011. A Study on Potential and Utilization of Renewable Energy Sources in Turkey, 6th International Advanced Technologies Symposium (IATS’11), May 2011, Elazığ, Turkey.
  • 9. Baris K., Kucukali S., 2012. Availability of Renewable Energy Sources in Turkey: Current Situation, Potential, Government Policies and the EU Perspective, Energy Policy 42 (2012) 377–391.
  • 10. Republic of Turkey Ministry of Energy And Natural Resources (YEGM), http://www.eie.gov.tr/.
  • 11. Energy Institute (EE). http://enerjienstitusu.com/turkiye-kurulu elektrik-enerji-gucu-mw/.
  • 12. Liu Y. H., Liu C. L., Huang J. W., Chen J. H., 2013. Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments, Solar Energy 89 (2013) 42–53.
  • 13. El Chaar L., Iamont L. A., El Zein N., 2011. Review of Photovoltaic Technologies, Renewable and Sustainable Energy Reviews 15 (2011) 2165–2175.
  • 14. Razykof T. M., Ferekides C. S., Morel D., Stefenakos E., Ullal H. S., Upadhyaya H. M., 2011. Solar photovoltaic electricity: Current status and future prospects, Solar Energy 85 (2011) 1580–1608.
  • 15. Maycock P., 2015. 2006-2015 World PV Market: Technology & Cost, http://www.ncsl.org/ print /energy /PMaycockSolar1007.pdf.
  • 16. National Renewable Energy Laboratory (NREL),http://www.nrel.gov/learning/re_phot ovoltaics.html.
  • 17. Energy Informative (EI), http://energyinformative.org/.
  • 18. Lynn P.A., 2010. Electricity from Sunlight. An Introduction to Photovoltaics. WILEY, 221 pages.
  • 19. Kolic Y., Gauthier E., Perez G. M. A., Sibai A., Dupuy J. C., Pinard P., M’ghaieth R., Maaref H., 1995. Electron powder ribbon polycrystalline silicon plates used for porous layer fabrication, thin solid films 255 (1995) 159-162.
  • 20. Clean Energy Istitute, University of Washington. http://depts.washington.edu/uwcei/ wordpress/wp-content/uploads/2014/04 /PVcell displaycards.pdf.
  • 21. Green M.A., Emery K., Hishikawa Y., Warta W. Dunlop E.D., 2015. Solar cell efficiency tables (Version 45), Progress in Photovoltaics: Research and ApplicationsWILEY 23:1–9.
  • 22. Villalva M. G., Gazoli J. R., Filho E. R., 2009. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays, IEEE Trans. on Power Electronics, Vol. 24, No. 5.
  • 23. Patel H., Agarwal V., 2008. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics, IEEE Transactions on Energy Conversion, Vol. 23, No. 1.
  • 24. Gow J. A., Manning C. D., 1999 .Development of a photovoltaic array model for use in power-electronics simulation studies, IEE Proc.-Electr. Power Appl., Vol. 146, No.2.
  • 25. Massawe H. B., 2013. Grid Connected Photovoltaic Systems with Smart Grid functionality,M.S. Thesis, Norwegian University of Science and Technology, Department of Electric Power Engineering, 66 Pages.
  • 26. Blas M. A., Torres J. L., Prieto E., Garcia A., 2001. Selecting a suitable model for characterizing photovoltaic devices, Renewable Energy 25 (2002) 371–380.
  • 27. Celik A. N. And Acikgoz N., 2007. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and fiveparameter models,” Appl. Energy, vol. 84,
  • no. 1, pp. 1–15. 28. Soto W., Klein S. A., Beckman W. A., 2006. Improvement and validation of a model for photovoltaic array performance, Solar Energy 80 (2006) 78–88.
  • 29. Mahmoud Y., Xiao W., Zeineldin H. H., 2012. A Simple Approach to Modeling and Simulation of Photovoltaic Modules, IEEE Transactions on Sustainable Energy, Vol. 3, No. 1.
  • 30. Xiao W., Ozog N., Dunford W. G., 2007. Topology Study of Photovoltaic Interface for Maximum Power Point Tracking, IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, 1696-1704.
  • 31. Said S., Massoud A., Benammar M., Ahmed S., 2012. A Matlab /Simulink- Based Photovoltaic Array Model Employing Sim Power Systems Toolbox, Journal of Energy and Power Engineering 6 (2012) 1965-1975.
  • 32. Can H., 2013. Model of a photovoltaic panel emulator in MATLAB-Simulink, Turkish Journal of Electrical Engineering & Computer Sciences Sci 21: 301–308.
  • 33. Suthar M., Singh G.K., Saini R.P., 2013. Comparison of mathematical models of photo-voltaic (PV) module and effect of various parameters on its performance, International Conference on Energy Efficient Technologies for Sustainability (ICEETS), pp.1354,1359.
  • 34. Taherbaneh M., Farahani G., 2011. Rahmani K., Evaluation the Accuracy of One-Diode and Two-Diode Models for a Solar Panel Based Open-Air Climate Measurements, Solar Cells – Silicon Wafer-Based Technologies, Prof. Leonid A. Kosyachenko (Ed.), ISBN: 978-953-307-747-5, InTech, http://www.intechopen.com/books/solarcells-silicon-wafer-basedtechnologies/evaluation-the-accuracyof- onediode-and-two-diode-models-for-a-solarpanel-based-open-air-climate-m.
  • 35. Salas V., Olias E., Barrado A., Lazaro A., 2006. Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems, Solar Energy Materials & Solar Cells 90 (2006) 1555–1578. 36. Kerekes T., Teodorescu R., Borup U., 2007. Transformerless Photovoltaic Inverters Connected to the Grid. IEEE 2007 Applied Electronics Conference, (APEC), 2007, pp 1733-1737.
  • 37. Fragaki and Markvart, 2008. Stand-alone PV system design: Results using a new sizing approach, Renewable Energy 33 (2008) 162– 167
  • 38. Lalili D., Mellit A., Lourci N., Medjahet B., Boubakri C., 2013. State Feedback Control and Variable Step Size MPPT Algorithm of Three-Level Grid-Connected Photovoltaic Inverter. Sol. Energy 98, 561-571 (2013).
  • 39. S. Nanou and S. Papathanassiou, 2014. Modeling of a PV System with Grid Code Compatibility”. Electric Power Systems Research, vol. 116, Nov. 2014, pp. 301-310.
  • 40. Evju S. E., 2007. MSc Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 164 pages.
  • 41. Elektrik Piyasası Şebeke Yönetmeliği (EPŞY),http://www.epdk.gov.tr/index.php/ele ktrik-piyasasi/mevzuat?id=89.
  • 42. Teke A., 2011. Unified Power Quality Conditioner: Design, Simulation and Experimental Analysis, PhD Thesis, Çukurova University, Institute of Natural and Applied Sciences, 204 pages

Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards

Yıl 2015, Cilt: 30 Sayı: 2, 137 - 150, 25.07.2016
https://doi.org/10.21605/cukurovaummfd.242770

Öz

The effective utilization of energy has become a major concern in recent years on account of the rapidly increasing demand with population growth and industrialization. In parallel with this growing demand towards energy usage, the world-wide energy supply has been subjected to enormous stress. Therefore, energy efficiency and using alternative energy sources issues have become more crucial. Photovoltaic (PV) systems can be shown among the mostly used alternative energy sources and this technology is gaining remarkable popularity. However, PV systems suffer from low system efficiency, high initial cost and erratic atmospheric conditions. Presently, the studies are extended in order to improve the structural efficiency of the PV panels and provide energy efficiency solutions by qualifying the raw material. In this paper, it is aimed to make an investigation on the PV cells technology in terms of efficiency, cost and technical properties based on employed raw materials. On the other hand, a PV panel model is presented to achieve extraction of panel characteristic and for usage in power systems simulation in PSCAD/EMTDC program. This panel model is suitable for the purpose of realizing power system dynamic and transient analysis of both stand-alone and grid connected PV systems. Also an evaluation of grid connection standards and codes for Turkey is presented in detail.

Kaynakça

  • 1. Exposito A. G., Conejo A. J., Canizares C., 2009. Electric Energy Systems, CRC Press, 648 pages.
  • 2. Wurfel P., 2009. Physics of Solar Cells, WILEY-VCH, 244 pages . 3. Çelik Ö., 2015. A Novel Hybrid MPPT Method for Grid Connected Photovoltaic Systems with Partial Shading Conditions, MSc Thesis, Çukurova University, Institute of Natural and Applied Sciences, 130 pages.
  • 4. U.S. Energy Information Administration (EIA) http://www.eia.gov/renewable/annual/solar_p hoto/
  • 5. Liu Y., 2009. Advanced Control of Photovoltaic Converters, PhD Thesis, University of Leicester, Department of Engineering, 141 Pages.
  • 6. BP Statistical Review of World Energy 2014, 2014. http://www.bp.com/content/dam/bp/pdf /Energy-economics/statistical-review- 2014/BP-statistical-review-of-world-energy- 2014-full-report.pdf.
  • 7. Renewable Energy Policy Network for the 21st Century, 2014. Renewables 2014, Global Status Report, http://www.ren21.net/portals/0/documents/res ources/gsr/2014/gsr2014_full%20report_low %20res. Pdf.
  • 8. Sagbas A., Karamanlioglu T., 2011. A Study on Potential and Utilization of Renewable Energy Sources in Turkey, 6th International Advanced Technologies Symposium (IATS’11), May 2011, Elazığ, Turkey.
  • 9. Baris K., Kucukali S., 2012. Availability of Renewable Energy Sources in Turkey: Current Situation, Potential, Government Policies and the EU Perspective, Energy Policy 42 (2012) 377–391.
  • 10. Republic of Turkey Ministry of Energy And Natural Resources (YEGM), http://www.eie.gov.tr/.
  • 11. Energy Institute (EE). http://enerjienstitusu.com/turkiye-kurulu elektrik-enerji-gucu-mw/.
  • 12. Liu Y. H., Liu C. L., Huang J. W., Chen J. H., 2013. Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments, Solar Energy 89 (2013) 42–53.
  • 13. El Chaar L., Iamont L. A., El Zein N., 2011. Review of Photovoltaic Technologies, Renewable and Sustainable Energy Reviews 15 (2011) 2165–2175.
  • 14. Razykof T. M., Ferekides C. S., Morel D., Stefenakos E., Ullal H. S., Upadhyaya H. M., 2011. Solar photovoltaic electricity: Current status and future prospects, Solar Energy 85 (2011) 1580–1608.
  • 15. Maycock P., 2015. 2006-2015 World PV Market: Technology & Cost, http://www.ncsl.org/ print /energy /PMaycockSolar1007.pdf.
  • 16. National Renewable Energy Laboratory (NREL),http://www.nrel.gov/learning/re_phot ovoltaics.html.
  • 17. Energy Informative (EI), http://energyinformative.org/.
  • 18. Lynn P.A., 2010. Electricity from Sunlight. An Introduction to Photovoltaics. WILEY, 221 pages.
  • 19. Kolic Y., Gauthier E., Perez G. M. A., Sibai A., Dupuy J. C., Pinard P., M’ghaieth R., Maaref H., 1995. Electron powder ribbon polycrystalline silicon plates used for porous layer fabrication, thin solid films 255 (1995) 159-162.
  • 20. Clean Energy Istitute, University of Washington. http://depts.washington.edu/uwcei/ wordpress/wp-content/uploads/2014/04 /PVcell displaycards.pdf.
  • 21. Green M.A., Emery K., Hishikawa Y., Warta W. Dunlop E.D., 2015. Solar cell efficiency tables (Version 45), Progress in Photovoltaics: Research and ApplicationsWILEY 23:1–9.
  • 22. Villalva M. G., Gazoli J. R., Filho E. R., 2009. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays, IEEE Trans. on Power Electronics, Vol. 24, No. 5.
  • 23. Patel H., Agarwal V., 2008. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics, IEEE Transactions on Energy Conversion, Vol. 23, No. 1.
  • 24. Gow J. A., Manning C. D., 1999 .Development of a photovoltaic array model for use in power-electronics simulation studies, IEE Proc.-Electr. Power Appl., Vol. 146, No.2.
  • 25. Massawe H. B., 2013. Grid Connected Photovoltaic Systems with Smart Grid functionality,M.S. Thesis, Norwegian University of Science and Technology, Department of Electric Power Engineering, 66 Pages.
  • 26. Blas M. A., Torres J. L., Prieto E., Garcia A., 2001. Selecting a suitable model for characterizing photovoltaic devices, Renewable Energy 25 (2002) 371–380.
  • 27. Celik A. N. And Acikgoz N., 2007. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and fiveparameter models,” Appl. Energy, vol. 84,
  • no. 1, pp. 1–15. 28. Soto W., Klein S. A., Beckman W. A., 2006. Improvement and validation of a model for photovoltaic array performance, Solar Energy 80 (2006) 78–88.
  • 29. Mahmoud Y., Xiao W., Zeineldin H. H., 2012. A Simple Approach to Modeling and Simulation of Photovoltaic Modules, IEEE Transactions on Sustainable Energy, Vol. 3, No. 1.
  • 30. Xiao W., Ozog N., Dunford W. G., 2007. Topology Study of Photovoltaic Interface for Maximum Power Point Tracking, IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, 1696-1704.
  • 31. Said S., Massoud A., Benammar M., Ahmed S., 2012. A Matlab /Simulink- Based Photovoltaic Array Model Employing Sim Power Systems Toolbox, Journal of Energy and Power Engineering 6 (2012) 1965-1975.
  • 32. Can H., 2013. Model of a photovoltaic panel emulator in MATLAB-Simulink, Turkish Journal of Electrical Engineering & Computer Sciences Sci 21: 301–308.
  • 33. Suthar M., Singh G.K., Saini R.P., 2013. Comparison of mathematical models of photo-voltaic (PV) module and effect of various parameters on its performance, International Conference on Energy Efficient Technologies for Sustainability (ICEETS), pp.1354,1359.
  • 34. Taherbaneh M., Farahani G., 2011. Rahmani K., Evaluation the Accuracy of One-Diode and Two-Diode Models for a Solar Panel Based Open-Air Climate Measurements, Solar Cells – Silicon Wafer-Based Technologies, Prof. Leonid A. Kosyachenko (Ed.), ISBN: 978-953-307-747-5, InTech, http://www.intechopen.com/books/solarcells-silicon-wafer-basedtechnologies/evaluation-the-accuracyof- onediode-and-two-diode-models-for-a-solarpanel-based-open-air-climate-m.
  • 35. Salas V., Olias E., Barrado A., Lazaro A., 2006. Review of the Maximum Power Point Tracking Algorithms for Stand-Alone Photovoltaic Systems, Solar Energy Materials & Solar Cells 90 (2006) 1555–1578. 36. Kerekes T., Teodorescu R., Borup U., 2007. Transformerless Photovoltaic Inverters Connected to the Grid. IEEE 2007 Applied Electronics Conference, (APEC), 2007, pp 1733-1737.
  • 37. Fragaki and Markvart, 2008. Stand-alone PV system design: Results using a new sizing approach, Renewable Energy 33 (2008) 162– 167
  • 38. Lalili D., Mellit A., Lourci N., Medjahet B., Boubakri C., 2013. State Feedback Control and Variable Step Size MPPT Algorithm of Three-Level Grid-Connected Photovoltaic Inverter. Sol. Energy 98, 561-571 (2013).
  • 39. S. Nanou and S. Papathanassiou, 2014. Modeling of a PV System with Grid Code Compatibility”. Electric Power Systems Research, vol. 116, Nov. 2014, pp. 301-310.
  • 40. Evju S. E., 2007. MSc Thesis, Norwegian University of Science and Technology, Department of Electrical Power Engineering, 164 pages.
  • 41. Elektrik Piyasası Şebeke Yönetmeliği (EPŞY),http://www.epdk.gov.tr/index.php/ele ktrik-piyasasi/mevzuat?id=89.
  • 42. Teke A., 2011. Unified Power Quality Conditioner: Design, Simulation and Experimental Analysis, PhD Thesis, Çukurova University, Institute of Natural and Applied Sciences, 204 pages
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Diğer ID JA34FA24NJ
Bölüm Makaleler
Yazarlar

Özgür Çelik Bu kişi benim

Ahmet Teke Bu kişi benim

H. Başak Yıldırım Bu kişi benim

Yayımlanma Tarihi 25 Temmuz 2016
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 2

Kaynak Göster

APA Çelik, Ö., Teke, A., & Yıldırım, H. B. (2016). Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(2), 137-150. https://doi.org/10.21605/cukurovaummfd.242770
AMA Çelik Ö, Teke A, Yıldırım HB. Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards. cukurovaummfd. Temmuz 2016;30(2):137-150. doi:10.21605/cukurovaummfd.242770
Chicago Çelik, Özgür, Ahmet Teke, ve H. Başak Yıldırım. “Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30, sy. 2 (Temmuz 2016): 137-50. https://doi.org/10.21605/cukurovaummfd.242770.
EndNote Çelik Ö, Teke A, Yıldırım HB (01 Temmuz 2016) Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30 2 137–150.
IEEE Ö. Çelik, A. Teke, ve H. B. Yıldırım, “Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards”, cukurovaummfd, c. 30, sy. 2, ss. 137–150, 2016, doi: 10.21605/cukurovaummfd.242770.
ISNAD Çelik, Özgür vd. “Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30/2 (Temmuz 2016), 137-150. https://doi.org/10.21605/cukurovaummfd.242770.
JAMA Çelik Ö, Teke A, Yıldırım HB. Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards. cukurovaummfd. 2016;30:137–150.
MLA Çelik, Özgür vd. “Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 30, sy. 2, 2016, ss. 137-50, doi:10.21605/cukurovaummfd.242770.
Vancouver Çelik Ö, Teke A, Yıldırım HB. Survey of Photovoltaic (PV) Technologies, PV Module Characteristics, Connection Forms and Standards. cukurovaummfd. 2016;30(2):137-50.