BibTex RIS Kaynak Göster

Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing

Yıl 2015, Cilt: 30 Sayı: 1, 57 - 64, 25.07.2016
https://doi.org/10.21605/cukurovaummfd.242812

Öz

Bu çalışmada, cevher hazırlamada ıslanabilirliğe dayanan işlemlerden olan flotasyon, makaslama flokülasyonu, yağ aglomerasyonu ve sıvı–sıvı ekstraksiyonu için kritik parametreler değerlendirilmiştir. Bu işlemlerde ‘kritik ıslanma yüzey gerilimi (c)’ değeri oldukça önemlidir. Ayrıca, mineralin cdeğerinden biraz yüksek olan ‘yağ aglomerasyonu için kritik çözelti yüzey gerilimi (c-a)’ ve ‘sıvısıvı ekstraksiyonu için kritik çözelti yüzey gerilimi (c-e)’ değerleri yağ aglomerasyonu ve sıvısıvı ekstraksiyonu tekniklerinin başarılı olabilmesini sağlayan parametrelerdir. Katı, sıvı/ortam ve yağdan oluşan üçlü faz sistemlerinin bulunduğu yağ aglomerasyonu ve sıvısıvı ekstraksiyonu yöntemlerinde, yağsıvı ara yüzey gerilimine (γOL) dayanan ikincil kritik parametreler ise sırasıyla ‘yağ aglomerasyonu için kritik yağsıvı ara yüzey gerilimi, γcOLa’ ve ‘sıvısıvı ekstraksiyonu için kritik yağsıvı ara yüzey gerilimi, γcOLe’dir

Kaynakça

  • 1. Somasundaran, P., 1980. Principles of Flocculation, Dispersion, and Selective Flocculation, in Fine Particle Processing, Somasundaran, P., Ed., AIME, New York, 947–975.
  • 2. Capes, C.E., Darcovich, K., A., 1984. Survey of Oil Agglomeration in Wet Fine Coal Processing. Powder Technology, 40: 43–52,
  • 3. Yarar, B., 1988a. Gamma Flotation: A New Approach to Flotation, Using Liquid–Vapor Surface Tension Control, in Developments in Mineral Processing, Castro, S.H., and Alvarez, J., Eds., Elsevier, New York, 4164p.
  • 4. Laskowski, J.S., 1992. Oil Assisted Fine Particle Processing, in Colloid Chemistry in Mineral Processing, Laskowski, J.S., and Ralston, J., Eds., Elsevier, New York, 361-394. 5. Kusaka, E., Kamata, Y., Fukunata, Y.,
  • Nakahiro, Y., 1998. Effect of Hydrolysed Metal Cations on the Liquid–Liquid Extraction of Silica Fines with Cetyltrimethylammonium Chloride, Colloids Surf. A: Physicochem. Eng. Aspects, 139: 155–162.
  • 6. Ozkan, A., Aydogan, S. Yekeler, M., 2005. Critical Solution Surface Tension for Oil Agglomeration, International Journal of Mineral Processing, 76: 83–91.
  • 7. Duzyol, S., Ozkan, A., Yekeler, M., 2012. Critical Oil–Liquid Interfacial Tension for some Oil-Assisted Fine Particle Processing Methods, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398:32–36.
  • 8. Fuerstenau, D.W., Diago, J., Williams, M.C., 1991. Characterization of the Wettability of Solid Particles by Film Flotation 1. Experimental Investigation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 60: 127−144.
  • 9. Yarar, B., 1988b. Flotation, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. B2(23), VCH, Weinheim, 1–29.
  • 10. Warren, L.J., 1975. Shear Flocculation of Ultrafine Scheelite in Sodium Oleate Solutions, J. Colloid Interface Sci., 50: 307–318.
  • 11. Koh, P.T.L., Warren, L.J., 1980. A Pilot Plant Test of the Shear Flocculation of Ultrafine Scheelite, in Trans. 8th Aust. Chem. Eng. Conf., Melbourne, 90–94.
  • 12. Laskowski, J.S., 2000. Aggregation of Fine Particles in Mineral Processing Circuits, in Proceedings of the 8th International Mineral Processing Symposium, Ozbayoglu, G., Hosten, C., Atalay, M.U., Hicyilmaz, C., and Arol A.I. Eds., Antalya, Turkey, Balkema, Rotterdam, 139–147.
  • 13. Yekeler, M., Yarar, B., 1994a. Critical Surface Tension of Wetting of Low Surface Energy Minerals and Their Separations by Gamma Flotation: Realger, Talc, Stibnite and Sulfur, New Mexico: SME Annual Meeting, Preprint, 94–17.
  • 14. Shafrin, E.G., Zisman, W.A., 1960. Constitutive Relations in the Wetting of Low Energy Surfaces and the Theory of the Retraction Method of Preparing Monolayers, J. Phys. Chem., 64: 519−524,
  • 15. Yarar, B., Kaoma, J., 1984. Estimation of the Critical Surface Tension of Wetting of Hydrophobic Solids by Flotation, Colloids and Surfaces, 11: 429–436.
  • 16. Williams, M.C., Fuerstenau, D.W., 1987. A Simple Flotation Method for Rapidly Assessing the Hydrophobicity of Coal particles, International Journal of Mineral Processing, 20: 153–157.
  • 17. Sun, S.C., Troxell, R.C., 1957. Try Bubble Pick up for Rapid Flotation Testing. E. & M. J., 158 (7): 79–80.
  • 18. Walker, P.L., Peterson, E.E., Wright, S.S., 1952. Surface Active Agent Phenomena in Dust Abatement”, Ind. Eng. Chem., 44: 2389– 2393.
  • 19.Rosano, H.L., Gerbacia, W., Feinstein, M.E., Swaine, J.W., 1971. Determination of the Critical Surface Tension Using an Automatic Wetting Balance, J. Colloid Interface Sci., 36 (3): 298–307.
  • 20. Wu, S., 1968. Estimation of the Critical Surface Tension for Polymers from Molecular Constitution by a Modified Hildebrand–Scott Equation, J. Phys. Chem., 72 (9): 3332–3334.
  • 21. Ozkan, A., 2004. Determination of the Critical Surface Tension of Wetting of Minerals Treated with Surfactants by Shear Flocculation Approach”, Journal of Colloid and Interface Science, 277: 437−442.
  • 22. Kelebek, S., 1987. Critical Surface Tension of Wetting and of Floatability of Molybdenite and Sulfur, Journal of Colloid and Interface Science, 124: 504−514.
  • 23. Yekeler, M., Yarar, B., 1994b. Techniques for Assessing the Floatability Characteristics of Minerals, Cukurova University 15th Anniversary Symposium, Anıl, M. Ed., Adana, 473−480.
  • 24. Ozkan, A., Duzyol, S., 2010. Critical Solution Surface Tension for Liquid–Liquid Extraction , Separation and Purification Technology, 76 (1): 79-83.

Cevher Hazırlamada Islanabilirliğe Dayanan İşlemler için Kritik Parametrelerin Değerlendirilmesi

Yıl 2015, Cilt: 30 Sayı: 1, 57 - 64, 25.07.2016
https://doi.org/10.21605/cukurovaummfd.242812

Öz

This paper presents an evaluation of critical parameters for wettability-based processes such as flotation, shear flocculation, oil agglomeration and liquid–liquid extraction in mineral processing. ‘The critical surface tension of wetting (c)’ value of minerals has crucial importance in these processes. Also, ‘the critical solution surface tension for oil agglomeration (c-a)’ and ‘the critical solution surface tension for liquidliquid extraction (c-e)’ parameters, which are slightly higher than the c value of the mineral, exist for achieving the oil agglomeration and liquidliquid extraction techniques. In the case of three-phase systems composed of solid, liquid/medium and oil such as oil agglomeration and liquidliquid extraction techniques, there is a second critical parameter based on the oilliquid interfacial tension (γOL) which are ‘the critical oilliquid interfacial tension for oil agglomeration, γcOLa’ and ‘the critical oilliquid interfacial tension for liquidliquid extraction, γcOLe’, respectively

Kaynakça

  • 1. Somasundaran, P., 1980. Principles of Flocculation, Dispersion, and Selective Flocculation, in Fine Particle Processing, Somasundaran, P., Ed., AIME, New York, 947–975.
  • 2. Capes, C.E., Darcovich, K., A., 1984. Survey of Oil Agglomeration in Wet Fine Coal Processing. Powder Technology, 40: 43–52,
  • 3. Yarar, B., 1988a. Gamma Flotation: A New Approach to Flotation, Using Liquid–Vapor Surface Tension Control, in Developments in Mineral Processing, Castro, S.H., and Alvarez, J., Eds., Elsevier, New York, 4164p.
  • 4. Laskowski, J.S., 1992. Oil Assisted Fine Particle Processing, in Colloid Chemistry in Mineral Processing, Laskowski, J.S., and Ralston, J., Eds., Elsevier, New York, 361-394. 5. Kusaka, E., Kamata, Y., Fukunata, Y.,
  • Nakahiro, Y., 1998. Effect of Hydrolysed Metal Cations on the Liquid–Liquid Extraction of Silica Fines with Cetyltrimethylammonium Chloride, Colloids Surf. A: Physicochem. Eng. Aspects, 139: 155–162.
  • 6. Ozkan, A., Aydogan, S. Yekeler, M., 2005. Critical Solution Surface Tension for Oil Agglomeration, International Journal of Mineral Processing, 76: 83–91.
  • 7. Duzyol, S., Ozkan, A., Yekeler, M., 2012. Critical Oil–Liquid Interfacial Tension for some Oil-Assisted Fine Particle Processing Methods, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 398:32–36.
  • 8. Fuerstenau, D.W., Diago, J., Williams, M.C., 1991. Characterization of the Wettability of Solid Particles by Film Flotation 1. Experimental Investigation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 60: 127−144.
  • 9. Yarar, B., 1988b. Flotation, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. B2(23), VCH, Weinheim, 1–29.
  • 10. Warren, L.J., 1975. Shear Flocculation of Ultrafine Scheelite in Sodium Oleate Solutions, J. Colloid Interface Sci., 50: 307–318.
  • 11. Koh, P.T.L., Warren, L.J., 1980. A Pilot Plant Test of the Shear Flocculation of Ultrafine Scheelite, in Trans. 8th Aust. Chem. Eng. Conf., Melbourne, 90–94.
  • 12. Laskowski, J.S., 2000. Aggregation of Fine Particles in Mineral Processing Circuits, in Proceedings of the 8th International Mineral Processing Symposium, Ozbayoglu, G., Hosten, C., Atalay, M.U., Hicyilmaz, C., and Arol A.I. Eds., Antalya, Turkey, Balkema, Rotterdam, 139–147.
  • 13. Yekeler, M., Yarar, B., 1994a. Critical Surface Tension of Wetting of Low Surface Energy Minerals and Their Separations by Gamma Flotation: Realger, Talc, Stibnite and Sulfur, New Mexico: SME Annual Meeting, Preprint, 94–17.
  • 14. Shafrin, E.G., Zisman, W.A., 1960. Constitutive Relations in the Wetting of Low Energy Surfaces and the Theory of the Retraction Method of Preparing Monolayers, J. Phys. Chem., 64: 519−524,
  • 15. Yarar, B., Kaoma, J., 1984. Estimation of the Critical Surface Tension of Wetting of Hydrophobic Solids by Flotation, Colloids and Surfaces, 11: 429–436.
  • 16. Williams, M.C., Fuerstenau, D.W., 1987. A Simple Flotation Method for Rapidly Assessing the Hydrophobicity of Coal particles, International Journal of Mineral Processing, 20: 153–157.
  • 17. Sun, S.C., Troxell, R.C., 1957. Try Bubble Pick up for Rapid Flotation Testing. E. & M. J., 158 (7): 79–80.
  • 18. Walker, P.L., Peterson, E.E., Wright, S.S., 1952. Surface Active Agent Phenomena in Dust Abatement”, Ind. Eng. Chem., 44: 2389– 2393.
  • 19.Rosano, H.L., Gerbacia, W., Feinstein, M.E., Swaine, J.W., 1971. Determination of the Critical Surface Tension Using an Automatic Wetting Balance, J. Colloid Interface Sci., 36 (3): 298–307.
  • 20. Wu, S., 1968. Estimation of the Critical Surface Tension for Polymers from Molecular Constitution by a Modified Hildebrand–Scott Equation, J. Phys. Chem., 72 (9): 3332–3334.
  • 21. Ozkan, A., 2004. Determination of the Critical Surface Tension of Wetting of Minerals Treated with Surfactants by Shear Flocculation Approach”, Journal of Colloid and Interface Science, 277: 437−442.
  • 22. Kelebek, S., 1987. Critical Surface Tension of Wetting and of Floatability of Molybdenite and Sulfur, Journal of Colloid and Interface Science, 124: 504−514.
  • 23. Yekeler, M., Yarar, B., 1994b. Techniques for Assessing the Floatability Characteristics of Minerals, Cukurova University 15th Anniversary Symposium, Anıl, M. Ed., Adana, 473−480.
  • 24. Ozkan, A., Duzyol, S., 2010. Critical Solution Surface Tension for Liquid–Liquid Extraction , Separation and Purification Technology, 76 (1): 79-83.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA34CZ37ZV
Bölüm Makaleler
Yazarlar

Alper Özkan Bu kişi benim

Selma Düzyol Bu kişi benim

Yayımlanma Tarihi 25 Temmuz 2016
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 1

Kaynak Göster

APA Özkan, A., & Düzyol, S. (2016). Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(1), 57-64. https://doi.org/10.21605/cukurovaummfd.242812
AMA Özkan A, Düzyol S. Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing. cukurovaummfd. Temmuz 2016;30(1):57-64. doi:10.21605/cukurovaummfd.242812
Chicago Özkan, Alper, ve Selma Düzyol. “Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30, sy. 1 (Temmuz 2016): 57-64. https://doi.org/10.21605/cukurovaummfd.242812.
EndNote Özkan A, Düzyol S (01 Temmuz 2016) Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30 1 57–64.
IEEE A. Özkan ve S. Düzyol, “Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing”, cukurovaummfd, c. 30, sy. 1, ss. 57–64, 2016, doi: 10.21605/cukurovaummfd.242812.
ISNAD Özkan, Alper - Düzyol, Selma. “Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30/1 (Temmuz 2016), 57-64. https://doi.org/10.21605/cukurovaummfd.242812.
JAMA Özkan A, Düzyol S. Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing. cukurovaummfd. 2016;30:57–64.
MLA Özkan, Alper ve Selma Düzyol. “Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 30, sy. 1, 2016, ss. 57-64, doi:10.21605/cukurovaummfd.242812.
Vancouver Özkan A, Düzyol S. Evaluation of Critical Parameters for Wettability-Based Processes in Mineral Processing. cukurovaummfd. 2016;30(1):57-64.