BibTex RIS Kaynak Göster

Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow

Yıl 2012, Cilt: 27 Sayı: 1, 39 - 51, 25.07.2016

Öz

Bu çalışmanın amacı boru içerisine yerleştirilmiş orifis metre etrafındaki laminar akış yapısının çözümüne farklı sayısal yöntemlerin etkisinin araştırılmasıdır. Orifis çapının boru çapına β=0,6 boyutsuz orifis kalınlığı, L*=1/12 çalışma boyunca sabit tutulmuştur. Akış iki boyutlu, eksenel simetrik, viskoz, sıkıştırılamaz, daimi ve tam gelişmiş kabul edilmiştir. Akışı tanımlayan denklemler, FORTRAN programlama dili ile yazılmış bilgisayar programları kullanılarak, iki farklı sonlu farklar yöntemiyle çözülmüştür. Bu sonlu farklar yöntemleri, İmplisit Değişen Yönler yöntemi ve Upwind yöntemidir. Ayrıca elde edilen sayısal sonuçların karşılaştırılması amacıyla akış yapısı Fluent paket programı kullanılarak sonlu hacimler yöntemiyle de çözülmüştür. Sayısal yöntemlerle elde edilmiş olan debi çıkış katsayısı değerlerinin literatürden elde edilmiş olan deneysel değerler ile karşılaştırması yapılmıştır. Literatürden elde edilmiş deneysel sonuçlar ile en uyumlu sonucu implisit değişen yönler yöntemi vermiştir. Akışı tarif eden girdap eş değer eğrileri, akım çizgileri ve orifis debi çıkış katsayısı değerleri şekillerle gösterilerek detaylı bir şekilde izah edilmiştir

Kaynakça

  • 1. Johansen, F. C., “Flow Through Pipe Orifices at Low Reynolds Numbers”, Proc R Soc, 126 (Series A), 231, 1930.
  • 2. Erdal, A. and Andersson, H. I., “Numerical Aspects of Flow Computation Through Orifices”, Flow Measurement and Instrumentation, Vol. 8, No. 1, pp. 27-37, 1997.
  • 3. Mills, R. D., “Numerical Solutions of Viscous Flow Through a Pipe Orifice at Low Reynolds Numbers”, Mechanical Engineering Science, 10(2), 133-140, 1968.
  • 4. Coder, D. A. and Buckley, F. T., “Implicit Solutions of the Unsteady Navier-Stokes Equation For Laminar Flow Through an Orifice Within a Pipe”, Computers and Fluids, Vol.2, pp. 295-314, 1974.
  • 5. Davis, R.W. and Mattingly, G.E., “Numerical Modelling of Turbulent Flow Through Thin Orifice Plates”, Proceedings of the Semp. on Flow in Open Channels and Closed Conduits Held at NBS, 23-25 February 1977.
  • 6. Alvi, S. H., Sridharan, K., and Lakshmana Rao, N. S., “Loss Characteristics of Orifices and Nozzles”, Journals of Fluids Engineering, 100, 299-307, 1978.
  • 7. Nigro, F. E. B., Strong, A. B. and Alpay, S. A., “A Numerical Study of the Laminar Viscous Incompressible Flow Through a Pipe Orifice”, Journal of Fluids Engineering, Vol.100, pp. 467-472, 1978.
  • 8. Nallasamy, M., “Numerical Solution of the Separating Flow Due to an Obstruction”, Computers and Fluids, Vol. 14, No. 1, pp. 59- 68, 1986.
  • 9. Cho and Goldstein, “An improved lowReynolds-number κ-ε turbulence model for recirculating flows”, International Journal of Heat and Mass Transfer, 37, 10, 1495-1508, 1994.
  • 10.Çekici, V., “Orifislerde Düşük Reynolds Sayılarındaki Akış Karakteristiklerinin İncelenmesi”, MSc. Thesis, Çukurova University Institute of Natural and Applied Sciences, 1991.
  • 11.Jones, E. H. and Bajura, R. A., “A Numerical Analysis of Pulsating Laminar Flow Through a Pipe Orifice”, Journal of Fluids Engineering, Vol. 113, no. 2, pp. 199-205, 1991.
  • 12. Ma, H. and Ruth, D.W., “A New Scheme for Vorticity Computations Near a Sharp Corner”, Computers and Fluids, Vol.23, No.1, pp 23-38, 1994.
  • 13. Sahin, B. and Ceyhan, H., "A Numerical and Experimental Analysis of Laminar Flow Through Square Edged Orifice with a Variable Thickness", Transactions of the Institute of Measurement and Control, Vol.18, No.4, pp.166-173, 1996.
  • 14. Sahin, B., and Akıllı, H., "Finite Element Solution of Laminar Flow Through SquareEdged Orifice with a Variable Thickness", International Journal of Computational Fluid Dynamics, Vol.9, pp.85-88, 1997.
  • 15. Gan, G. and Riffat, S. B., “Pressure Loss Characteristics of Orifice and Perforated Plates”, Experimental Thermal and Fluid Science, Vol.14, pp. 160-165, 1997.
  • 16.Ramamurthi, K. and Nandakumar, K., “Characteristics of flow through small sharpedged cylindrical orifices”, Flow Measurement and Instrumentation, Vol. 10, pp. 133–143, 1999.
  • 17. Tunay, T., “Investigation of Laminar and Turbulent Flow Characteristics through Orifice with Variable Thicknesses”, MSc. Thesis, Çukurova University Institute of Natural and Applied Sciences, 2002.
  • 18. Tunay, T., Kahraman, A. and Şahin, B., 2002. "Orifis Yerleştirilmiş Borudaki Akışın Sayısal Çözümüne Sınır Şartlarının Etkisi", GAP 4. Mühendislik Kongresi, Şanlıurfa.
  • 19. Tunay, T., Kahraman, A. and Şahin, B., 2011. "Effects of the Boundary Conditions on the Numerical Solution of the Orifice Flow", Ç.Ü. Müh. Mim. Fak. Dergisi, accepted for publication.
  • 20. Tunay, T., Sahin, B. and Akıllı, H., "Investigation of Laminar and Turbulent flow through an orifice plate inserted in a pipe", Transactions of the Canadian Society for Mechanical Engineering, 28 (2B), 403-414, 2004.
  • 21.Bohra, L. K., “Flow and Pressure Drop of Highly Viscous fluids in Small Aperture Orifices”. MSc. Thesis, Georgia Institute of Technology, 2

Çeşitli Sayısal Yöntemlerin Orifis Etrafındaki Akışın Sayısal Çözümüne Etkisinin İncelenmesi

Yıl 2012, Cilt: 27 Sayı: 1, 39 - 51, 25.07.2016

Öz

Aim of the present study is to investigate the effects of different numerical methods on the solution of laminar flow characteristics through an orifice plate inserted in a pipe. Ratio of the orifice diameter to the pipe diameter, β=0,6 and dimensionless orifice plate thickness, L*=1/12, were kept constant throughout the study. The fluid flow was assumed to be two dimensional, axisymmetric, viscous, incompressible, steady and fully developed. Governing equations of the flow were solved with the aid of computer programs written in FORTRAN computer language by using two finite difference methods. These finite difference methods were alternating direction implicit method and upwind method. Additionally, finite volume method with the aid of Fluent package program was also employed to solve the flow for the purpose of comparison. Numerically obtained orifice discharge coefficient results were compared with experimental results obtained from literature. The best conformity with previous experimental results was obtained by using alternating direction implicit method. Vorticity contours, streamline and orifice discharge coefficient of the flow were presented in figures and discussed in details

Kaynakça

  • 1. Johansen, F. C., “Flow Through Pipe Orifices at Low Reynolds Numbers”, Proc R Soc, 126 (Series A), 231, 1930.
  • 2. Erdal, A. and Andersson, H. I., “Numerical Aspects of Flow Computation Through Orifices”, Flow Measurement and Instrumentation, Vol. 8, No. 1, pp. 27-37, 1997.
  • 3. Mills, R. D., “Numerical Solutions of Viscous Flow Through a Pipe Orifice at Low Reynolds Numbers”, Mechanical Engineering Science, 10(2), 133-140, 1968.
  • 4. Coder, D. A. and Buckley, F. T., “Implicit Solutions of the Unsteady Navier-Stokes Equation For Laminar Flow Through an Orifice Within a Pipe”, Computers and Fluids, Vol.2, pp. 295-314, 1974.
  • 5. Davis, R.W. and Mattingly, G.E., “Numerical Modelling of Turbulent Flow Through Thin Orifice Plates”, Proceedings of the Semp. on Flow in Open Channels and Closed Conduits Held at NBS, 23-25 February 1977.
  • 6. Alvi, S. H., Sridharan, K., and Lakshmana Rao, N. S., “Loss Characteristics of Orifices and Nozzles”, Journals of Fluids Engineering, 100, 299-307, 1978.
  • 7. Nigro, F. E. B., Strong, A. B. and Alpay, S. A., “A Numerical Study of the Laminar Viscous Incompressible Flow Through a Pipe Orifice”, Journal of Fluids Engineering, Vol.100, pp. 467-472, 1978.
  • 8. Nallasamy, M., “Numerical Solution of the Separating Flow Due to an Obstruction”, Computers and Fluids, Vol. 14, No. 1, pp. 59- 68, 1986.
  • 9. Cho and Goldstein, “An improved lowReynolds-number κ-ε turbulence model for recirculating flows”, International Journal of Heat and Mass Transfer, 37, 10, 1495-1508, 1994.
  • 10.Çekici, V., “Orifislerde Düşük Reynolds Sayılarındaki Akış Karakteristiklerinin İncelenmesi”, MSc. Thesis, Çukurova University Institute of Natural and Applied Sciences, 1991.
  • 11.Jones, E. H. and Bajura, R. A., “A Numerical Analysis of Pulsating Laminar Flow Through a Pipe Orifice”, Journal of Fluids Engineering, Vol. 113, no. 2, pp. 199-205, 1991.
  • 12. Ma, H. and Ruth, D.W., “A New Scheme for Vorticity Computations Near a Sharp Corner”, Computers and Fluids, Vol.23, No.1, pp 23-38, 1994.
  • 13. Sahin, B. and Ceyhan, H., "A Numerical and Experimental Analysis of Laminar Flow Through Square Edged Orifice with a Variable Thickness", Transactions of the Institute of Measurement and Control, Vol.18, No.4, pp.166-173, 1996.
  • 14. Sahin, B., and Akıllı, H., "Finite Element Solution of Laminar Flow Through SquareEdged Orifice with a Variable Thickness", International Journal of Computational Fluid Dynamics, Vol.9, pp.85-88, 1997.
  • 15. Gan, G. and Riffat, S. B., “Pressure Loss Characteristics of Orifice and Perforated Plates”, Experimental Thermal and Fluid Science, Vol.14, pp. 160-165, 1997.
  • 16.Ramamurthi, K. and Nandakumar, K., “Characteristics of flow through small sharpedged cylindrical orifices”, Flow Measurement and Instrumentation, Vol. 10, pp. 133–143, 1999.
  • 17. Tunay, T., “Investigation of Laminar and Turbulent Flow Characteristics through Orifice with Variable Thicknesses”, MSc. Thesis, Çukurova University Institute of Natural and Applied Sciences, 2002.
  • 18. Tunay, T., Kahraman, A. and Şahin, B., 2002. "Orifis Yerleştirilmiş Borudaki Akışın Sayısal Çözümüne Sınır Şartlarının Etkisi", GAP 4. Mühendislik Kongresi, Şanlıurfa.
  • 19. Tunay, T., Kahraman, A. and Şahin, B., 2011. "Effects of the Boundary Conditions on the Numerical Solution of the Orifice Flow", Ç.Ü. Müh. Mim. Fak. Dergisi, accepted for publication.
  • 20. Tunay, T., Sahin, B. and Akıllı, H., "Investigation of Laminar and Turbulent flow through an orifice plate inserted in a pipe", Transactions of the Canadian Society for Mechanical Engineering, 28 (2B), 403-414, 2004.
  • 21.Bohra, L. K., “Flow and Pressure Drop of Highly Viscous fluids in Small Aperture Orifices”. MSc. Thesis, Georgia Institute of Technology, 2
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA33YE33UC
Bölüm Makaleler
Yazarlar

Tural Tunay

Yayımlanma Tarihi 25 Temmuz 2016
Yayımlandığı Sayı Yıl 2012 Cilt: 27 Sayı: 1

Kaynak Göster

APA Tunay, T. (2016). Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 27(1), 39-51.
AMA Tunay T. Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow. cukurovaummfd. Temmuz 2016;27(1):39-51.
Chicago Tunay, Tural. “Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 27, sy. 1 (Temmuz 2016): 39-51.
EndNote Tunay T (01 Temmuz 2016) Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 27 1 39–51.
IEEE T. Tunay, “Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow”, cukurovaummfd, c. 27, sy. 1, ss. 39–51, 2016.
ISNAD Tunay, Tural. “Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 27/1 (Temmuz 2016), 39-51.
JAMA Tunay T. Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow. cukurovaummfd. 2016;27:39–51.
MLA Tunay, Tural. “Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 27, sy. 1, 2016, ss. 39-51.
Vancouver Tunay T. Investigation of the Effects of Different Numerical Methods On the Solution of the Orifice Flow. cukurovaummfd. 2016;27(1):39-51.