Araştırma Makalesi
BibTex RIS Kaynak Göster

The Influence of Air Pollutants on the Atmospheric Corrosion of Bronze Artefacts and Protection with Inhibitor

Yıl 2016, Cilt: 31 Sayı: 2, 401 - 414, 15.12.2016
https://doi.org/10.21605/cukurovaummfd.310332

Öz

Atmospheric corrosion of bronze has been investigated in presence of air pollutants, since this material is widely preferred for construction of artefacts, in relation with meteorological parameters. The data showed that bronze surface could be protected with organic thin film which is also compatible with natural oxides. Polymer-like organic films were obtained on the surface, thanks to chemisorption of organic inhibitor molecules. The said layer was shown to exhibit high protection efficiency against atmospheric corrosion.

Kaynakça

  • 1. Tidblad, J., Kucera, V., Mikhailov, A.A. 1998. UN/ECE International Co-operative Programme on Effects on Materials, Including Historic and Cultural Monuments, Swedish Corrosion Institue, Sweden.
  • 2. Mendoza, A.R., Corvo, F., 2000. Outdoor and Indoor Atmospheric Corrosion of Non-ferrous Metals. Corrosion Science 42: 1123-1147.
  • 3. Arroyave, C., Morcillo, M., 1995. The Effect of Nitrogen Oxides in Atmospheric Corrosion of Metals. Corrosion Science 37: 293-305.
  • 4. Fabjan, E. S., Kosec, T., Kuhar, V., Legat, A., 2011. Corrosion Stability of Different Bronzes in Simulated Urban Rain, Materials and Technology 45: 585-591.
  • 5. Syed, S., 2006. Atmospheric corrosion of Materials, Emirates Journal for Engineering Research 11: 1-24.
  • 6. Watt, J., Tidblad, J., Kucera, V., Hamilton, R., 2009. The Effects of Air Pollution on Cultural Heritage, Springer, New York, USA.
  • 7. Yatkın, S., Bayram, A., 2007. İzmir Havasında Partikül Madde Kirliliği: Ölçüm ve Değerlendirme, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi 9: 15-27.
  • 8. Fenger, J., Hertel, O., Palmgren, F., 1998. Urban Air Pollution-European Aspects, Springer Science+Business Media Dordrecht, Denmark.
  • 9. Liao, X., Cao, F., Chen, A., Liu, W., Zhang, J., Cao, C., 2012. In Situ Investigation of Atmospheric Corrosion Behavior of Bronze under Thin Electrolyte Layers Using Electrochemical Technique, Transaction Nonferrous Metals Society of China 22: 1239-1249.
  • 10. Mendoza, A.R., Corvo, F., 1999. Outdoor and Indoor Atmospheric Corrosion of Carbon Steel. Corrosion Science 41: 75-86.
  • 11. Gerengi, H., Bereket, G., Kurtay, M., 2016. A Morphological and Electrochemical Comparison of the Corrosion Process of Aluminum Alloys under Simulated Acid Rain Conditions, Journal of the Taiwan Institute of Chemical Engineers, 58: 509-516.
  • 12. Feliu, S., Mariaca, L., Simancas, J., Gonzales, J. A., Morcillo, M., 2003. Effect of NO2 and/or SO2 Atmospheric Contaminants and Relative Humidity on Copper Corrosion, Revista Metal Madrid 39: 279-288.
  • 13. Wadsak, M., Aastrup, T., Odnevall Wallinder, I., Leygraf, C., Schreiner, M., 2002. Multianalytical in Situ Investigation of the Initial Atmospheric Corrosion of Bronze, Corrosion Science 44: 791-802.
  • 14. Nord, A.G., Tronner, K., Boyce, J., 2001. Atmospheric Bronze and Copper Corrosion as an Environmental Indicator, Water, Air, and Soil Pollution 127: 193-204.
  • 15. Hettiarachchi, S., 1991. The Effects of Ozone on Corrosion of Steel and Copper in Cooling Water Systems, Corrosion’91, Paper 206 (edited by NACE International) Houston, TX.
  • 16. Brown, B.E., Duquette Rensselaer, D.J., 1993. The Effects of Dissolved Ozone on the Corrosion Behavior of 304 Stainless Steel, Monel 400 and Naval Brass in Artificial Sea Water, Polytechnic Institute Materials Engineering Department Final Report to the Office of Naval Research, Troy, New York.
  • 17. Yüksek, A., Can, J., Dinçer, K. V., Oğuzhan, S., Sabah, I., 2013. Çevre ve Şehircilik Bakanlığı ve Adana Büyükşehir Belediyesi, Hava Kalitesi Değerlendirme Raporu, Adana.
  • 18. Portella, M.O.G., Portella, K.F., Pereira, P.A.M., Inone, P.C., Brambilla, K.J.C., Cabussu, M.S., Cerqueira, D.P., Salles, R.N., 2012. Atmospheric Corrosion Rates of Copper, Galvanized Steel, Carbon Steel and Aluminum in the Metropolitan Region of Salvador, BA, Northeast Brazil, Procedia Engineering 42: 171-185.
  • 19. Liu, B., Wang, D.W., Guo, H., Ling, Z.H., Cheung, K., 2015. Metallic Corrosion in the Polluted Urban Atmosphere of Hong Kong, Environmental Monitoring and Assessment, 187:4112-4122.
  • 20. Zerjav G., Lanzutti A., Andreatta F., Fedrizzi L., Milosev I., 2016. Characterization of Self-Assembled Layers Made with Stearic Acid, Benzotriazole, or 2-Mercaptobenzimidazole on Surface of Copper for Corrosion Protection in Simulated Urban Air. Materials and Corrosion, in Press.
  • 21. FitzGerald K.P., Nairn J., Skennerton G., Atrens, A., 2006. Atmospheric Corrosion of Copper and the Colour, Structure and Composition of Natural Patinas on Copper. Corrosion Science 48: 2480-2509.
  • 22. He, L., Liang, J., Jiang, B., 2011. Corrosion Behavior and Morphological Features of Archeological Bronze Coins from Ancient China, Microchemical Journal, 99: 203-212.
  • 23. Robiola, L., Blengino, J.M., Fiaud, C., 1998. Morphology and Mechanisms of Formation of Natural Patinas on Archeological Cu-Sn Alloys, Corrosion Science 40: 2083-2111.
  • 24. Chiavari, C., Bernardi, E., Balbo, A., Monticelli, C., Raffo, S., Bignozzi, M.C., Martini, C., 2015. Atmospheric Corrosion of Fire-Gilded Bronze: Corrosion and Corrosion Protection During Accelerated Ageing Tests. Corrosion Science, 100: 435-447.
  • 25. Kosec, T., Legat, A., Milosev, I., 2010. The Comparison of Organic Layers on Bronze and Copper. Progress in Organic Coatings 69: 199-206.
  • 26. Zerjav, G., Milosev, I., 2015. Protection of Copper Against Corrosion in Simulated Urban Rain by the Combined Action of Benzotriazole, 2-Mercaptobenzimidazole and Stearic Acid, Corrosion Science 98: 180-191.

Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi ve İnhibitörle Korunması

Yıl 2016, Cilt: 31 Sayı: 2, 401 - 414, 15.12.2016
https://doi.org/10.21605/cukurovaummfd.310332

Öz

Arkeolojik ve modern yapıtlarda sıkça karşılaşılan bronz malzemenin atmosferik korozyonu, havada bulunan kirleticiler ve diğer meteorolojik verilerle ilişkilendirilerek çalışılmıştır. Bronz yüzeyinin atmosferik korozyona karşı uzun süreli korunmasını sağlamak için organik inhibitör etkinlikleri test edilmiştir. İnhibitörün kimyasal adsorpsiyonu ile oluşan polimerik filmin oksit birikintisi ile uyumlu olduğu ve bu yolla atmosferik korozyona karşı etkin bir koruma sağlanabileceği gösterilmiştir

Kaynakça

  • 1. Tidblad, J., Kucera, V., Mikhailov, A.A. 1998. UN/ECE International Co-operative Programme on Effects on Materials, Including Historic and Cultural Monuments, Swedish Corrosion Institue, Sweden.
  • 2. Mendoza, A.R., Corvo, F., 2000. Outdoor and Indoor Atmospheric Corrosion of Non-ferrous Metals. Corrosion Science 42: 1123-1147.
  • 3. Arroyave, C., Morcillo, M., 1995. The Effect of Nitrogen Oxides in Atmospheric Corrosion of Metals. Corrosion Science 37: 293-305.
  • 4. Fabjan, E. S., Kosec, T., Kuhar, V., Legat, A., 2011. Corrosion Stability of Different Bronzes in Simulated Urban Rain, Materials and Technology 45: 585-591.
  • 5. Syed, S., 2006. Atmospheric corrosion of Materials, Emirates Journal for Engineering Research 11: 1-24.
  • 6. Watt, J., Tidblad, J., Kucera, V., Hamilton, R., 2009. The Effects of Air Pollution on Cultural Heritage, Springer, New York, USA.
  • 7. Yatkın, S., Bayram, A., 2007. İzmir Havasında Partikül Madde Kirliliği: Ölçüm ve Değerlendirme, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi 9: 15-27.
  • 8. Fenger, J., Hertel, O., Palmgren, F., 1998. Urban Air Pollution-European Aspects, Springer Science+Business Media Dordrecht, Denmark.
  • 9. Liao, X., Cao, F., Chen, A., Liu, W., Zhang, J., Cao, C., 2012. In Situ Investigation of Atmospheric Corrosion Behavior of Bronze under Thin Electrolyte Layers Using Electrochemical Technique, Transaction Nonferrous Metals Society of China 22: 1239-1249.
  • 10. Mendoza, A.R., Corvo, F., 1999. Outdoor and Indoor Atmospheric Corrosion of Carbon Steel. Corrosion Science 41: 75-86.
  • 11. Gerengi, H., Bereket, G., Kurtay, M., 2016. A Morphological and Electrochemical Comparison of the Corrosion Process of Aluminum Alloys under Simulated Acid Rain Conditions, Journal of the Taiwan Institute of Chemical Engineers, 58: 509-516.
  • 12. Feliu, S., Mariaca, L., Simancas, J., Gonzales, J. A., Morcillo, M., 2003. Effect of NO2 and/or SO2 Atmospheric Contaminants and Relative Humidity on Copper Corrosion, Revista Metal Madrid 39: 279-288.
  • 13. Wadsak, M., Aastrup, T., Odnevall Wallinder, I., Leygraf, C., Schreiner, M., 2002. Multianalytical in Situ Investigation of the Initial Atmospheric Corrosion of Bronze, Corrosion Science 44: 791-802.
  • 14. Nord, A.G., Tronner, K., Boyce, J., 2001. Atmospheric Bronze and Copper Corrosion as an Environmental Indicator, Water, Air, and Soil Pollution 127: 193-204.
  • 15. Hettiarachchi, S., 1991. The Effects of Ozone on Corrosion of Steel and Copper in Cooling Water Systems, Corrosion’91, Paper 206 (edited by NACE International) Houston, TX.
  • 16. Brown, B.E., Duquette Rensselaer, D.J., 1993. The Effects of Dissolved Ozone on the Corrosion Behavior of 304 Stainless Steel, Monel 400 and Naval Brass in Artificial Sea Water, Polytechnic Institute Materials Engineering Department Final Report to the Office of Naval Research, Troy, New York.
  • 17. Yüksek, A., Can, J., Dinçer, K. V., Oğuzhan, S., Sabah, I., 2013. Çevre ve Şehircilik Bakanlığı ve Adana Büyükşehir Belediyesi, Hava Kalitesi Değerlendirme Raporu, Adana.
  • 18. Portella, M.O.G., Portella, K.F., Pereira, P.A.M., Inone, P.C., Brambilla, K.J.C., Cabussu, M.S., Cerqueira, D.P., Salles, R.N., 2012. Atmospheric Corrosion Rates of Copper, Galvanized Steel, Carbon Steel and Aluminum in the Metropolitan Region of Salvador, BA, Northeast Brazil, Procedia Engineering 42: 171-185.
  • 19. Liu, B., Wang, D.W., Guo, H., Ling, Z.H., Cheung, K., 2015. Metallic Corrosion in the Polluted Urban Atmosphere of Hong Kong, Environmental Monitoring and Assessment, 187:4112-4122.
  • 20. Zerjav G., Lanzutti A., Andreatta F., Fedrizzi L., Milosev I., 2016. Characterization of Self-Assembled Layers Made with Stearic Acid, Benzotriazole, or 2-Mercaptobenzimidazole on Surface of Copper for Corrosion Protection in Simulated Urban Air. Materials and Corrosion, in Press.
  • 21. FitzGerald K.P., Nairn J., Skennerton G., Atrens, A., 2006. Atmospheric Corrosion of Copper and the Colour, Structure and Composition of Natural Patinas on Copper. Corrosion Science 48: 2480-2509.
  • 22. He, L., Liang, J., Jiang, B., 2011. Corrosion Behavior and Morphological Features of Archeological Bronze Coins from Ancient China, Microchemical Journal, 99: 203-212.
  • 23. Robiola, L., Blengino, J.M., Fiaud, C., 1998. Morphology and Mechanisms of Formation of Natural Patinas on Archeological Cu-Sn Alloys, Corrosion Science 40: 2083-2111.
  • 24. Chiavari, C., Bernardi, E., Balbo, A., Monticelli, C., Raffo, S., Bignozzi, M.C., Martini, C., 2015. Atmospheric Corrosion of Fire-Gilded Bronze: Corrosion and Corrosion Protection During Accelerated Ageing Tests. Corrosion Science, 100: 435-447.
  • 25. Kosec, T., Legat, A., Milosev, I., 2010. The Comparison of Organic Layers on Bronze and Copper. Progress in Organic Coatings 69: 199-206.
  • 26. Zerjav, G., Milosev, I., 2015. Protection of Copper Against Corrosion in Simulated Urban Rain by the Combined Action of Benzotriazole, 2-Mercaptobenzimidazole and Stearic Acid, Corrosion Science 98: 180-191.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Göksu Tansuğ

Yayımlanma Tarihi 15 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 31 Sayı: 2

Kaynak Göster

APA Tansuğ, G. (2016). Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi ve İnhibitörle Korunması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(2), 401-414. https://doi.org/10.21605/cukurovaummfd.310332
AMA Tansuğ G. Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi ve İnhibitörle Korunması. cukurovaummfd. Aralık 2016;31(2):401-414. doi:10.21605/cukurovaummfd.310332
Chicago Tansuğ, Göksu. “Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi Ve İnhibitörle Korunması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31, sy. 2 (Aralık 2016): 401-14. https://doi.org/10.21605/cukurovaummfd.310332.
EndNote Tansuğ G (01 Aralık 2016) Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi ve İnhibitörle Korunması. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 2 401–414.
IEEE G. Tansuğ, “Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi ve İnhibitörle Korunması”, cukurovaummfd, c. 31, sy. 2, ss. 401–414, 2016, doi: 10.21605/cukurovaummfd.310332.
ISNAD Tansuğ, Göksu. “Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi Ve İnhibitörle Korunması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31/2 (Aralık 2016), 401-414. https://doi.org/10.21605/cukurovaummfd.310332.
JAMA Tansuğ G. Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi ve İnhibitörle Korunması. cukurovaummfd. 2016;31:401–414.
MLA Tansuğ, Göksu. “Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi Ve İnhibitörle Korunması”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 31, sy. 2, 2016, ss. 401-14, doi:10.21605/cukurovaummfd.310332.
Vancouver Tansuğ G. Bronz Yapıtların Atmosferik Korozyonunda Hava Kirleticilerin Etkisi ve İnhibitörle Korunması. cukurovaummfd. 2016;31(2):401-14.