Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Diffuser Augmented Wind Turbine Technologies

Yıl 2017, Cilt: 32 Sayı: 1, 147 - 154, 15.03.2017
https://doi.org/10.21605/cukurovaummfd.310075

Öz

Renewable energy technologies play an important role in contribution of global energy demand as well as conservation of the environment. Researchers have realized that wind turbines combined with a diffuser increase efficiency and start generating electricity with a lower wind speed. It is also expected that increasing efficiency of wind turbine results in reduction of energy generation cost. In this respects, designing wind turbine running with high efficiency with a lower wind speed needs further research and development. In this study, performance indicators of variety geometrically structured horizontal and vertical axis wind turbine technologies which their output power augmented through utilization of diffusers were investigated in detail.

Kaynakça

  • 1. Sørensen, J. N., 2011. Aerodynamic Aspects of Wind Energy Conversion, Annu Rev Fluid Mech., 43, p. 427-448.
  • 2. Lilley, G. M., Rainbird, W. J., 1956. A Preliminary Report on the Design and Performance of Ducted Windmills; Report 102; College of Aeronautics Cranfield: Cranfield, UK.
  • 3. Oman, R. A., Foreman, K. M., Gilbert, B. L., 1975. A Progress Report on the Diffuser Augmented Wind Turbine, In Proceedings of the 3rd Biennial Conference and Workshop on Wind Energy Conversion Systems, Washington, DC, USA, 8(12), p. 829–826.
  • 4. Igra, O., 1977. Compact Shrouds for Wind Turbines, Energy Conversion and Management, 16, p. 149–157.
  • 5. Foreman, K. M., Gilbert, B., Oman, R. A., 1978. Diffuser Augmentation of Wind Turbines, Solar Energy, 20, p. 305–311.
  • 6. Gilbert, B. L., Oman, R. A., Foreman, K. M., 1978. Fluid Dynamics of Diffuser-Augmented Wind Turbines, Journal of Energy, 2, p. 368–374.
  • 7. Igra, O., 1981. Research and Development for Shrouded Wind Turbines, Energy Conversion and Management, 21, p. 13–48.
  • 8. Gilbert, B. L., Foreman, K. M., 1983. Experiments with a Diffuser-Augmented Model Wind Turbine, Trans. ASME, Journal of Energy Resources Technology, 105, p. 46–53.
  • 9. Phillips, D. G., Richards, P. J., Flay, R. G. J., 2002. CFD Modelling and the Development of the Diffuser Augmented Wind Turbine, Wind and Structures, 5, p. 267–276.
  • 10. Hansen, M. O. L., Sørensen, N. N., Flay, R. G. J., 2000. Effect of Placing a Diffuser Around a Wind Turbine, Wind Energy, 3, p. 207–213.
  • 11. Bet, F., Grassmann, H., 2003. Upgrading Conventional Wind Turbines, Renewable Energy, 28, p. 71–78.
  • 12. Jafari, S. A. H., Kosasih, B., 2014. Flow Analysis of Shrouded Small Wind Turbine with a Simple Frustum Diffuser with Computational Fluid Dynamics Simulations. Journal of Wind Engineering and Industrial Aerodynamics, 125, p. 102–110.
  • 13. Shonhiwa, C., Makaka, G., 2016. Concentrator Augmented Wind Turbines: A Review, Renewable and Sustainable Energy Reviews, 59, p. 1415–1418.
  • 14. Bilgili, M., Yasar, A., Ilhan, A., Sahin, B., 2015. Aerodynamic Characteristics of a Horizontal Axis Wind Turbine in Belen-Hatay, Turkey, International Journal of Natural and Engineering Sciences, 9 (1), p. 54-58.
  • 15. Ilhan, A., Efficiency Analysis of an Installed Wind Farm, MSc Thesis, Cukurova University, Institute of Natural and Applied Sciences, Adana, 2014.
  • 16. Hau, E., 2006. Wind Turbines: Fundamentals, Technologies, Application, Economics, Springer, Germany.
  • 17. Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., Krishna, V. H., 2016. Review on Small Scale Wind Turbines, Renewable and Sustainable Energy Reviews, 56, p. 1351-1371.
  • 18. Renewable Energy Policy Network for the 21st Century, Renewables, Global Status Report, 2016. Available from http://www.ren21.net/ status-of-renewables/global-status-report/
  • 19. Global Wind Energy Council, Global Wind Statistics, 2015. Available from http://www.gwec.net/wp-content/uploads/vip/ GWEC-PRstats-2015_LR.pdf
  • 20. Bilgili, M., Ozbek, A., Sahin, B., Kahraman, A., 2015. An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World, Renewable and Sustainable Energy Reviews, 49, p. 323-334.
  • 21. Disterfano, L. M., Jerson, R. P. B., Savio, W. O. V., Oliveira, E. F. M., Erb, F. S. L., Lins, S. E. F., Mesquita, A. L. A., 2015. An Investigation of a Mathematical Model for the Internal Velocity Profile of Conical Diffusers Applied to DAWTs, Annals of the Brazilian Academy of Sciences, 87(2), p. 1133-1148.
  • 22. Ohya, Y., Karasudani, T., 2010. A Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology, Energies, 3, p. 634–649.
  • 23. Rio Vaz, D. A. T. D., Mesquita, A. L. A., Vaz, J. R. P., Blanco, C. J. C., Pinho, J. T., 2014. An Extension of the Blade Element Momentum Method Applied to Diffuser Augmented Wind Turbines, Energy Conversion and Management, 87, p. 1116–1123.
  • 24. Shives, M., Crawford, C., 2011. Developing an Empirical Model for Ducted Tidal Turbine Performance Using Numerical Simulation Results, Proc. Inst. Mech. Eng., Part A, Journal of Power and Energy, 226(1), p. 112-125.
  • 25. Ohya, Y., Karasudani, T., Sakuraib, A., Abeb, K., Inouec, K., 2008. Development of a Shrouded Wind Turbine with a Flanged Diffuser, Journal of Wind Engineering and Industrial Aerodynamics, 96, p. 524–539.
  • 26. Wang, W. X., Matsubara, T., Hu, J., Odahara, S., Nagai, T., Karasutani, T., Ohya, Y., 2015. Experimental Investigation into the Influence of the Flanged Diffuser on the Dynamic Behavior of CFRP Blade of a Shrouded Wind Turbine, Renewable Energy, 78, p. 386–397.
  • 27. Kannan, T. S., Mutasher, S. A., Kenny Lau, Y.H., 2013. Desing and Flow Velocity Simulation of Diffuser Augmented Wind Turbine Using CFD, Journal of Engineering Science and Technology, 8(4), p. 372-384.
  • 28. Altan, B. D., Atılgan, M., Ozdamar, A., 2008. An Experimental Study on Improvement of a Savonius Rotor Performance with Curtaining, Experimental Thermal and Fluid Science, 32, p. 1673–1678.

Yayıcı ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi

Yıl 2017, Cilt: 32 Sayı: 1, 147 - 154, 15.03.2017
https://doi.org/10.21605/cukurovaummfd.310075

Öz

Küresel enerji ihtiyacının temin edilmesi ve çevrenin korunumu üzerine katkının sağlanmasında, yenilenebilir enerji teknolojileri önemli rol oynamaktadır. Araştırmacılar, yayıcı ile birleştirilmiş rüzgar türbinlerinin verimliliği artırdığını ve daha düşük rüzgar hızlarında elektrik üretimine başladıklarını fark etmişlerdir. İlaveten, rüzgar türbinine ait verimin artırılması, enerji üretim maliyetinin düşmesine sebep olmaktadır. Bu bakımdan, yüksek verimde ve daha düşük rüzgar hızında çalışan rüzgar türbinlerinin tasarımı ilave araştırma ve geliştirmeye ihtiyaç duymaktadır. Bu çalışmada, yayıcı ile güçlendirilmiş yatay ve dikey eksenli türbin teknolojilerinin farklı geometrilerdeki performans göstergeleri detaylı bir şekilde incelenmiştir.

Kaynakça

  • 1. Sørensen, J. N., 2011. Aerodynamic Aspects of Wind Energy Conversion, Annu Rev Fluid Mech., 43, p. 427-448.
  • 2. Lilley, G. M., Rainbird, W. J., 1956. A Preliminary Report on the Design and Performance of Ducted Windmills; Report 102; College of Aeronautics Cranfield: Cranfield, UK.
  • 3. Oman, R. A., Foreman, K. M., Gilbert, B. L., 1975. A Progress Report on the Diffuser Augmented Wind Turbine, In Proceedings of the 3rd Biennial Conference and Workshop on Wind Energy Conversion Systems, Washington, DC, USA, 8(12), p. 829–826.
  • 4. Igra, O., 1977. Compact Shrouds for Wind Turbines, Energy Conversion and Management, 16, p. 149–157.
  • 5. Foreman, K. M., Gilbert, B., Oman, R. A., 1978. Diffuser Augmentation of Wind Turbines, Solar Energy, 20, p. 305–311.
  • 6. Gilbert, B. L., Oman, R. A., Foreman, K. M., 1978. Fluid Dynamics of Diffuser-Augmented Wind Turbines, Journal of Energy, 2, p. 368–374.
  • 7. Igra, O., 1981. Research and Development for Shrouded Wind Turbines, Energy Conversion and Management, 21, p. 13–48.
  • 8. Gilbert, B. L., Foreman, K. M., 1983. Experiments with a Diffuser-Augmented Model Wind Turbine, Trans. ASME, Journal of Energy Resources Technology, 105, p. 46–53.
  • 9. Phillips, D. G., Richards, P. J., Flay, R. G. J., 2002. CFD Modelling and the Development of the Diffuser Augmented Wind Turbine, Wind and Structures, 5, p. 267–276.
  • 10. Hansen, M. O. L., Sørensen, N. N., Flay, R. G. J., 2000. Effect of Placing a Diffuser Around a Wind Turbine, Wind Energy, 3, p. 207–213.
  • 11. Bet, F., Grassmann, H., 2003. Upgrading Conventional Wind Turbines, Renewable Energy, 28, p. 71–78.
  • 12. Jafari, S. A. H., Kosasih, B., 2014. Flow Analysis of Shrouded Small Wind Turbine with a Simple Frustum Diffuser with Computational Fluid Dynamics Simulations. Journal of Wind Engineering and Industrial Aerodynamics, 125, p. 102–110.
  • 13. Shonhiwa, C., Makaka, G., 2016. Concentrator Augmented Wind Turbines: A Review, Renewable and Sustainable Energy Reviews, 59, p. 1415–1418.
  • 14. Bilgili, M., Yasar, A., Ilhan, A., Sahin, B., 2015. Aerodynamic Characteristics of a Horizontal Axis Wind Turbine in Belen-Hatay, Turkey, International Journal of Natural and Engineering Sciences, 9 (1), p. 54-58.
  • 15. Ilhan, A., Efficiency Analysis of an Installed Wind Farm, MSc Thesis, Cukurova University, Institute of Natural and Applied Sciences, Adana, 2014.
  • 16. Hau, E., 2006. Wind Turbines: Fundamentals, Technologies, Application, Economics, Springer, Germany.
  • 17. Tummala, A., Velamati, R. K., Sinha, D. K., Indraja, V., Krishna, V. H., 2016. Review on Small Scale Wind Turbines, Renewable and Sustainable Energy Reviews, 56, p. 1351-1371.
  • 18. Renewable Energy Policy Network for the 21st Century, Renewables, Global Status Report, 2016. Available from http://www.ren21.net/ status-of-renewables/global-status-report/
  • 19. Global Wind Energy Council, Global Wind Statistics, 2015. Available from http://www.gwec.net/wp-content/uploads/vip/ GWEC-PRstats-2015_LR.pdf
  • 20. Bilgili, M., Ozbek, A., Sahin, B., Kahraman, A., 2015. An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World, Renewable and Sustainable Energy Reviews, 49, p. 323-334.
  • 21. Disterfano, L. M., Jerson, R. P. B., Savio, W. O. V., Oliveira, E. F. M., Erb, F. S. L., Lins, S. E. F., Mesquita, A. L. A., 2015. An Investigation of a Mathematical Model for the Internal Velocity Profile of Conical Diffusers Applied to DAWTs, Annals of the Brazilian Academy of Sciences, 87(2), p. 1133-1148.
  • 22. Ohya, Y., Karasudani, T., 2010. A Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology, Energies, 3, p. 634–649.
  • 23. Rio Vaz, D. A. T. D., Mesquita, A. L. A., Vaz, J. R. P., Blanco, C. J. C., Pinho, J. T., 2014. An Extension of the Blade Element Momentum Method Applied to Diffuser Augmented Wind Turbines, Energy Conversion and Management, 87, p. 1116–1123.
  • 24. Shives, M., Crawford, C., 2011. Developing an Empirical Model for Ducted Tidal Turbine Performance Using Numerical Simulation Results, Proc. Inst. Mech. Eng., Part A, Journal of Power and Energy, 226(1), p. 112-125.
  • 25. Ohya, Y., Karasudani, T., Sakuraib, A., Abeb, K., Inouec, K., 2008. Development of a Shrouded Wind Turbine with a Flanged Diffuser, Journal of Wind Engineering and Industrial Aerodynamics, 96, p. 524–539.
  • 26. Wang, W. X., Matsubara, T., Hu, J., Odahara, S., Nagai, T., Karasutani, T., Ohya, Y., 2015. Experimental Investigation into the Influence of the Flanged Diffuser on the Dynamic Behavior of CFRP Blade of a Shrouded Wind Turbine, Renewable Energy, 78, p. 386–397.
  • 27. Kannan, T. S., Mutasher, S. A., Kenny Lau, Y.H., 2013. Desing and Flow Velocity Simulation of Diffuser Augmented Wind Turbine Using CFD, Journal of Engineering Science and Technology, 8(4), p. 372-384.
  • 28. Altan, B. D., Atılgan, M., Ozdamar, A., 2008. An Experimental Study on Improvement of a Savonius Rotor Performance with Curtaining, Experimental Thermal and Fluid Science, 32, p. 1673–1678.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Beşir Şahin

Akın İlhan Bu kişi benim

Mehmet Bilgili Bu kişi benim

Yayımlanma Tarihi 15 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 1

Kaynak Göster

APA Şahin, B., İlhan, A., & Bilgili, M. (2017). Yayıcı ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(1), 147-154. https://doi.org/10.21605/cukurovaummfd.310075
AMA Şahin B, İlhan A, Bilgili M. Yayıcı ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi. cukurovaummfd. Mart 2017;32(1):147-154. doi:10.21605/cukurovaummfd.310075
Chicago Şahin, Beşir, Akın İlhan, ve Mehmet Bilgili. “Yayıcı Ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32, sy. 1 (Mart 2017): 147-54. https://doi.org/10.21605/cukurovaummfd.310075.
EndNote Şahin B, İlhan A, Bilgili M (01 Mart 2017) Yayıcı ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32 1 147–154.
IEEE B. Şahin, A. İlhan, ve M. Bilgili, “Yayıcı ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi”, cukurovaummfd, c. 32, sy. 1, ss. 147–154, 2017, doi: 10.21605/cukurovaummfd.310075.
ISNAD Şahin, Beşir vd. “Yayıcı Ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32/1 (Mart 2017), 147-154. https://doi.org/10.21605/cukurovaummfd.310075.
JAMA Şahin B, İlhan A, Bilgili M. Yayıcı ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi. cukurovaummfd. 2017;32:147–154.
MLA Şahin, Beşir vd. “Yayıcı Ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 32, sy. 1, 2017, ss. 147-54, doi:10.21605/cukurovaummfd.310075.
Vancouver Şahin B, İlhan A, Bilgili M. Yayıcı ile Güçlendirilmiş Rüzgar Türbini Teknolojilerinin İncelenmesi. cukurovaummfd. 2017;32(1):147-54.