Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental and Numerical Studies on Tensile and Shear Fracturing of Brittle Materials

Yıl 2017, Cilt: 32 Sayı: 2, 173 - 182, 15.06.2017
https://doi.org/10.21605/cukurovaummfd.358420

Öz

Sudden and violent fracturing of brittle materials, such as rocks and concretes, still remain one of the
leading causes of fatalities in mining, civil and geotechnical industries today. The primary aim of this
study is to investigate the mixed modes, mode I (tensile) and mode II (shearing) fracturing mechanisms of
rock and prepared concrete specimens using Crack Chevron Notched Brazillian Disc (CCNBD) specimen
geometries. Static diametrical compression tests showed that the notched cracks at the centre of the
specimens opened (Mode I) up to 30 crack inclination angle (β), whereas crack closure started for
β > 33, and closure became more pronounced at even higher β of 45 and 70. A series of numerical
analyses were then performed by using a Finite Element Method (FEM) software FRANC2D to simulate
the stress distributions and fracturing behaviour of the samples at different β, and to obtain the Mode I
and Mode II fracture toughness values KIc and KIIc respectively. According to the numerical results, it was
unlikely to obtain pure Modes I and II using both the CCNBD specimens under diametral compressive
loading. Furthermore, the numerical simulations also suggested that KIc was more effective on crack
initiation than KIIc; whereas, at the onset of crack propagation, the opposite was the case.

Kaynakça

  • 1. Szwedzicki, T., 2003. Rock Mass Behaviour Prior to Failure. Int. J. Rock Mech. Min. Sci.; 40: 573-584.
  • 2. Rosmanith, H.P., 1983. Modelling of Fracture Process Zones and Singularity Dominated Zones. Eng. Fract. Mech., 17(6), 509–525.
  • 3. Whittaker, B.N., Singh, R.N., Sun, G., 1992. Rock Fracture Mechanics-Principles, Design and Applications. Amsterdam: Elsevier, p. 181- 190.
  • 4. Atkinson, C., Smelser, R.E., Sanchez, J., 1982. Combined Mode Fracture Via the Cracked Brazilian Disk Test. International Journal of Fracture, 18 (4), p. 279–291.
  • 5. Shetty, D.K., Rosenfield, A.R., Duckworth, W.H., 1985. Fracture Toughness of Ceramics Measured by a Chevron Notch Diametral Compression Test. Journal of American Ceramics Society, 68 (12), p. C325–C327.
  • 6. Swartz, S.E., Taha, N.M., 1990. Mixed Mode Crack Propagation and Fracture in Concrete. Engineering Fracture Mechanics 35, p. 137–144.
  • 7. Larsson, S.G., Carlsson, A.J., 1973. Influence of Non-singular Stress Terms and Specimen Geometry on Small Scale Yielding at Crack Tips in Elastoplastic Materials. Journal of the Mechanics and Physics of Solids, 21, p. 263–277.
  • 8. Lawn, B.R., 1993. Fracture of Brittle Solids. Cambridge University Press. Cambridge.
  • 9. Erarslan, N., Williams D.J., 2013. Mixed Mode Fracturing of Rocks under Static and Cyclic Loading, Rock Mechanics and Rock Engineering, 46, (5), p. 1035–1052.
  • 10. Ghamgosar M., 2017. PhD Thesis. Micromechanical and Microstructural Aspects Affecting Rock Damage, Fracture and Cutting Mechanisms. The University of Queensland, Australia.
  • 11.Irwin, G.R., 1948. Fracture Dynamics. Fracture of Metals, American Society of Metals, p. 147–166.
  • 12. Hoek, E., Bieniawski, Z.T., 1965. Brittle Fracture Propagation in Rock under Compression. International Journal of Fracture Mechanics, 1, p. 137–155.
  • 13. Al-Shayea, N.A., 2005. Crack Propagation Trajectories for Rocks under Mixed Mode I–II Fracture, Engineering Geology, 81, p. 84–97.
  • 14. Li, Y.P., Chen, L.Z., Wang, Y.H., 2005. Experimental Research on Pre-cracked Marble under Compression. International Journal of Solids and Structures, 42, p. 2505–2516.
  • 15. Erdogan, F., Sih, G.C., 1976. On the Crack Extension in Plates under Plane Loading and Transverse Shear, ASME Journal of Basic Engineering, 10, p. 25–37 .
  • 16. Awaji, H., Sato, S., 1978. Combined Mode Fracture Toughness Measurement by the Disk Test. Journal of Engineering Materials Technology, 100, p. 175–182.
  • 17. Smith, D.J., Ayatollahi, M. R., Pavier, M.J., 2001. The Role of T-stress in Brittle Fracture for Linear Elastic Materials under Mixed Mode Loading. Fatigue and Fracture of Engineering Materials and Structures 24(2), p. 137–150.
  • 18. Al-Maghrabi, M.N.N., Abd-Elhady, A.A., 2013. Effective Stress Intensity Factor of Rock-like Brittle Materials Subjected to Different Mode of Mixity. Journal of American Science, 9(3), p. 216-220.
  • 19. Wawrzynek, P., Ingraffea, A., 1987. Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach. Theoretical and Applied Fracture Mechanics, 8: p. 137-150.
  • 20.ISRM, 1978. International Society for Rock Mechanics. Suggested Methods for Determining Tensile Strength of Rock Materials. International Journal of Rock Mechanics, Mining Science and Geomechanics Abstracts, 15, p. 99–103.

Kırılgan Malzemelerin Çekme ve Makaslama Kırılmaları Üzerinde Deneysel ve Sayısal Çalışmalar

Yıl 2017, Cilt: 32 Sayı: 2, 173 - 182, 15.06.2017
https://doi.org/10.21605/cukurovaummfd.358420

Öz

Kayalar ve beton gibi kırılgan malzemelerin ani ve şiddetli kırılmaları hala madencilik ve inşaat
endüstrilerinde ölümcül olayların sebepleridir. Bu çalışmanın temel amacı ortak kırılma modu olan
modeI-II, mod I (çekme kırılmaları) ve mod II (makaslama) kırılmalarından oluşan yenilmelerin,
hazırlanmış CCNBD ismi verilen kaya ve beton numuneler ile incelenmesidir. Statik çapsal basma
gerilmesi altında test edilen numunelerde, çatlak eğim açısı , 30 olana kadar çentik çatlağında Mod I
kırılmaya neden olan açılmalar görülmüştür. Bunun yanında  açısı 33’den büyük olduğunda ise çentik
çatlağında kapanma gözlenmiştir ve bu kapanma  açısı 45 ve 70 olduğunda oldukça fazla ve belirgin
olmuştur. Sonlu elemanlar yöntemi ile işleyen FRANC2D programı kullanarak sayısal modellemeler yapılmıştır ve gerilme dağılımı analizi, çatlaklanma modellemeleri yapılarak Mod I ve II tıkızlık değerleri
olan KIc and KIIc değerleri bulunmuştur. Sayısal analiz sonuçlarına göre, çapsal basma gerilmesi altında
test edilen CCNBD numunelerde salt Mod I veya salt Mod II kırılmaların mümkün olmadığı
bulunmuştur. Ayrıca sayısal analiz sonuçları, çatlaklanmanın başlamasında mode I tıkızlık değeri olan
KIC’nin Mod II tıkızlık değeri KIIC’den daha baskın olduğu ve oluşmuş çatlağın ilerlemesinde ise tam tersi
olduğunu göstermiştir.

Kaynakça

  • 1. Szwedzicki, T., 2003. Rock Mass Behaviour Prior to Failure. Int. J. Rock Mech. Min. Sci.; 40: 573-584.
  • 2. Rosmanith, H.P., 1983. Modelling of Fracture Process Zones and Singularity Dominated Zones. Eng. Fract. Mech., 17(6), 509–525.
  • 3. Whittaker, B.N., Singh, R.N., Sun, G., 1992. Rock Fracture Mechanics-Principles, Design and Applications. Amsterdam: Elsevier, p. 181- 190.
  • 4. Atkinson, C., Smelser, R.E., Sanchez, J., 1982. Combined Mode Fracture Via the Cracked Brazilian Disk Test. International Journal of Fracture, 18 (4), p. 279–291.
  • 5. Shetty, D.K., Rosenfield, A.R., Duckworth, W.H., 1985. Fracture Toughness of Ceramics Measured by a Chevron Notch Diametral Compression Test. Journal of American Ceramics Society, 68 (12), p. C325–C327.
  • 6. Swartz, S.E., Taha, N.M., 1990. Mixed Mode Crack Propagation and Fracture in Concrete. Engineering Fracture Mechanics 35, p. 137–144.
  • 7. Larsson, S.G., Carlsson, A.J., 1973. Influence of Non-singular Stress Terms and Specimen Geometry on Small Scale Yielding at Crack Tips in Elastoplastic Materials. Journal of the Mechanics and Physics of Solids, 21, p. 263–277.
  • 8. Lawn, B.R., 1993. Fracture of Brittle Solids. Cambridge University Press. Cambridge.
  • 9. Erarslan, N., Williams D.J., 2013. Mixed Mode Fracturing of Rocks under Static and Cyclic Loading, Rock Mechanics and Rock Engineering, 46, (5), p. 1035–1052.
  • 10. Ghamgosar M., 2017. PhD Thesis. Micromechanical and Microstructural Aspects Affecting Rock Damage, Fracture and Cutting Mechanisms. The University of Queensland, Australia.
  • 11.Irwin, G.R., 1948. Fracture Dynamics. Fracture of Metals, American Society of Metals, p. 147–166.
  • 12. Hoek, E., Bieniawski, Z.T., 1965. Brittle Fracture Propagation in Rock under Compression. International Journal of Fracture Mechanics, 1, p. 137–155.
  • 13. Al-Shayea, N.A., 2005. Crack Propagation Trajectories for Rocks under Mixed Mode I–II Fracture, Engineering Geology, 81, p. 84–97.
  • 14. Li, Y.P., Chen, L.Z., Wang, Y.H., 2005. Experimental Research on Pre-cracked Marble under Compression. International Journal of Solids and Structures, 42, p. 2505–2516.
  • 15. Erdogan, F., Sih, G.C., 1976. On the Crack Extension in Plates under Plane Loading and Transverse Shear, ASME Journal of Basic Engineering, 10, p. 25–37 .
  • 16. Awaji, H., Sato, S., 1978. Combined Mode Fracture Toughness Measurement by the Disk Test. Journal of Engineering Materials Technology, 100, p. 175–182.
  • 17. Smith, D.J., Ayatollahi, M. R., Pavier, M.J., 2001. The Role of T-stress in Brittle Fracture for Linear Elastic Materials under Mixed Mode Loading. Fatigue and Fracture of Engineering Materials and Structures 24(2), p. 137–150.
  • 18. Al-Maghrabi, M.N.N., Abd-Elhady, A.A., 2013. Effective Stress Intensity Factor of Rock-like Brittle Materials Subjected to Different Mode of Mixity. Journal of American Science, 9(3), p. 216-220.
  • 19. Wawrzynek, P., Ingraffea, A., 1987. Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach. Theoretical and Applied Fracture Mechanics, 8: p. 137-150.
  • 20.ISRM, 1978. International Society for Rock Mechanics. Suggested Methods for Determining Tensile Strength of Rock Materials. International Journal of Rock Mechanics, Mining Science and Geomechanics Abstracts, 15, p. 99–103.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Nazife Erarslan Bu kişi benim

Yayımlanma Tarihi 15 Haziran 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 2

Kaynak Göster

APA Erarslan, N. (2017). Kırılgan Malzemelerin Çekme ve Makaslama Kırılmaları Üzerinde Deneysel ve Sayısal Çalışmalar. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(2), 173-182. https://doi.org/10.21605/cukurovaummfd.358420
AMA Erarslan N. Kırılgan Malzemelerin Çekme ve Makaslama Kırılmaları Üzerinde Deneysel ve Sayısal Çalışmalar. cukurovaummfd. Haziran 2017;32(2):173-182. doi:10.21605/cukurovaummfd.358420
Chicago Erarslan, Nazife. “Kırılgan Malzemelerin Çekme Ve Makaslama Kırılmaları Üzerinde Deneysel Ve Sayısal Çalışmalar”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32, sy. 2 (Haziran 2017): 173-82. https://doi.org/10.21605/cukurovaummfd.358420.
EndNote Erarslan N (01 Haziran 2017) Kırılgan Malzemelerin Çekme ve Makaslama Kırılmaları Üzerinde Deneysel ve Sayısal Çalışmalar. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32 2 173–182.
IEEE N. Erarslan, “Kırılgan Malzemelerin Çekme ve Makaslama Kırılmaları Üzerinde Deneysel ve Sayısal Çalışmalar”, cukurovaummfd, c. 32, sy. 2, ss. 173–182, 2017, doi: 10.21605/cukurovaummfd.358420.
ISNAD Erarslan, Nazife. “Kırılgan Malzemelerin Çekme Ve Makaslama Kırılmaları Üzerinde Deneysel Ve Sayısal Çalışmalar”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 32/2 (Haziran 2017), 173-182. https://doi.org/10.21605/cukurovaummfd.358420.
JAMA Erarslan N. Kırılgan Malzemelerin Çekme ve Makaslama Kırılmaları Üzerinde Deneysel ve Sayısal Çalışmalar. cukurovaummfd. 2017;32:173–182.
MLA Erarslan, Nazife. “Kırılgan Malzemelerin Çekme Ve Makaslama Kırılmaları Üzerinde Deneysel Ve Sayısal Çalışmalar”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 32, sy. 2, 2017, ss. 173-82, doi:10.21605/cukurovaummfd.358420.
Vancouver Erarslan N. Kırılgan Malzemelerin Çekme ve Makaslama Kırılmaları Üzerinde Deneysel ve Sayısal Çalışmalar. cukurovaummfd. 2017;32(2):173-82.