Araştırma Makalesi
BibTex RIS Kaynak Göster

Karıştırmalı Bilyalı Değirmende Kalsit Cevherinin Yaş Öğütme Parametrelerinin Optimizasyonu

Yıl 2018, Cilt: 33 Sayı: 3, 225 - 236, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.504714

Öz

Bu çalışma, kalsitin (CaCO3) dikey karıştırmalı bilyalı değirmen de çok ince öğütülmesi üzerine odaklanmıştır. Karıştırma hızı (rpm), bilya doluluk oranı (J), malzeme doluluk oranı (fc), katı konsantrasyon oranı (%) ve öğütme süresi (dak.) gibi çeşitli çalışma parametrelerinin etkileri yaş öğütme koşullarında incelenmiştir. Deneyler, kesikli öğütme şartlarında gerçekleştirilmiştir. Deney sonuçları ürün boyutu (d50), özgül yüzey alanı (m2/g) ve tane boyut dağılımı genişliğine göre değerlendirilmiştir. Bu çalışma sonucunda, optimum öğütme test koşulları karıştırıcı hızı için 840 d/d, bilye doluluk oranı için 0,70, malzeme doluluk oranı için 0,100, katı oranı için %50 ve öğütme süresi için 20 dakika olarak bulunmuştur. Karıştırma hızının, bilya doluluk oranının ve öğütme süresinin ürün inceliği ve spesifik yüzey alanı ile doğru orantılı olduğu, malzeme doluluk oranı ve katı konsantrasyon oranı ile ters orantılı olduğu gözlenmiştir. Ayrıca, tüm öğütme koşulları için tane boyut dağılımı genişliği azalan ürün tane boyutu ile azalmıştır.

Kaynakça

  • 1. Wang, Y., Forssberg, E., 2007. Enhancement of Energy Efficiency for Mechanical Production of Fine and Ultra-fine Particles in Comminution, China Particuology, 5, 193–201.
  • 2. Stein, J., 2005. Ultrafine Dry Grinding with Media Mills, Hosokawa Alp. AG, Augsbg. 17, 1–6.
  • 3. Stenger, F., Mende, S., Schwedes, J., Peukert, W., 2005. Nanomilling in Stirred Media Mills, Chem. Eng. Sci., 60, 4557–4565.
  • 4. Zheng, J., Harris, C.C., Somasundaran, P., 1996. A Study on Grinding and Energy Input in Stirred Media Mills, Powder Technol., 86, 171–178.
  • 5. Kwade, A., 1999. Wet Comminution in Stirred Media Mills-Research and its Practical Application, Powder Technol., 105, 14–20.
  • 6. Pilevneli, C.C., Kizgut, S., Toroglu, I., Çuhadaroglu, D., Yigit, E., 2004. Open and Closed Circuit Dry Grinding of Cement Mill Rejects in a Pilot Scale Vertical Stirred Mill, Powder Technol., 139, 165–174.
  • 7. Choi, H., Lee, W., Kim, D.U., Kumar, S., Kim, S.S., Chung, H.S., Kim, J.H., Ahn, Y.C., 2010. Effect of Grinding Aids on the Grinding Energy Consumed During Grinding of Calcite in a Stirred Ball Mill, Miner. Eng., 23, 54–57.
  • 8. Gokcen, H.S., Cayirli, S., Ucbas, Y., Kayaci, K., 2015. The Effect of Grinding Aids on Dry Micro Fine Grinding of Feldspar, Int. J. Miner. Process., 136, 42–44.
  • 9. Kinnarinen, T., Tuunila, R., Huhtanen, M., Häkkinen, A., Kejik, P., Sverak, T., 2015. Wet Grinding of CaCO3 with a Stirred Media Mill: Influence of Obtained Particle Size Distributions on Pressure Filtration Properties, Powder Technol., 273, 54-61.
  • 10. Wang, Y., Forssberg, E., 2000. Technical note Product Size Distribution in Stirred Media Mills, Miner. Eng., 13, 459–465.
  • 11. Jankovic, A., Sinclair, S., 2006. The Shape of Product Size Distributions in Stirred Mills, Miner. Eng., 19, 1528–1536.
  • 12. Johnson, R., Thiele, E., French, R., 1997. Light-scattering Efficiency of White Pigments: an Analysis of Model Core-shell Pigments vs. optimized rutile TiO2, Tappi J., 80, 233–239.
  • 13. Karbstein, H., Mueller, F., Polke, R., 1996. Producing Suspensions with Steep Particle Size Distributions in Fines Ranges, Erzeugung von Suspensionen mit steilen Partikelgroessenverteilungen im Feinstbereich, Aufbereitungs-Technik., 36, 464-473.
  • 14. Adi, H., Larson, I., Stewart, P., 2007. Use of Milling and Wet Sieving to Produce Narrow Particle Size Distributions of Lactose Monohydrate in the Sub-sieve Range, Powder Technol., 179, 95–99. 15. Nakach, M., Authelin, J.R., Chamayou, A., Dodds, J., 2004. Comparison of Various Milling Technologies for Grinding Pharmaceutical Powders, Int. J. Miner. Process., 74, 173-181.
  • 16. Nesset, D.P., Radziszewski, J.A., Hardie, P., Leroux, C., 2006. Assessing the Performance and Efficiency of Fine Grinding Technologies, Proc. 38th Annu. Can. Miner. Process. Oper. Conf., Ottawa, Canada, 283–310. 17. Werner, R., 2000. Effect of Extenders with Narrow and Broad Particle Size Distributions on the Properties of Coatings, J. Coatings Technol., 72, 71–76.
  • 18. Kotake, N., Kuboki, M., Kiya, S., Kanda, Y., 2011. Influence of Dry and Wet Grinding Conditions on Fineness and Shape of Particle Size Distribution of Product in a Ball Mill, Adv. Powder Technol., 22, 86-92.
  • 19. Jayasundara, C.T., Yang, R.Y., Yu, A.B., Rubenstein, J., 2010. Effects of Disc Rotation Speed and Media Loading on Particle Flow and Grinding Performance in a Horizontal Stirred Mill, Int. J. Miner. Process., 96, 27–35.
  • 20. Kwade, A., 2013. Basic Course Grinding and Dispersing with Stirred Media Mills (Third Edition), Technische Universitat Braunschweig, p. 423, Germany.
  • 21. Wang, Y., Forssberg, E., Sachweh, J., 2004. Dry Fine Comminution in a Stirred Media Mill-Maxx Mill??, Int. J. Miner. Process., 74, 65-74.
  • 22. Bel Fadhel, H., Frances, C., 2001. Wet Batch Grinding of Alumina Hydrate in a Stirred Bead Mill, Powder Technol., 119, 257–268.
  • 23. Altun, O., Benzer, H., Enderle, U., 2013. Effects of Operating Parameters on the Efficiency of Dry Stirred Milling, Miner. Eng., 43–44, 58–66.
  • 24. Suryanarayana, C., 2001. Mechanical Alloying and Milling, Prog. Mater. Sci., 46, 1–184.
  • 25. Orumwense, A.O., 2005. The Effect of Media Type on Regrinding with Stirred Mills, Minerals and Metallurgical Processing, 1, 43-48.
  • 26. Gao, M., Holmes, R., Pease, J., 2006. The Latest Developments in Fine and Ultrafine Grinding Technologies, Proc. 23rd Int. Miner. Process. Congr., Turkey, 30-37.
  • 27. Sivamohan, R., Vachot, P., 1990. A Comparative Study of Stirred and Vibratory Mills for the Fine Grinding of Muscovite, Wollastonite and Kaolinite, Powder Technol., 61, 119–129.
  • 28. Dikmen, S., 2008. Modelling of the Performance of Stirred Media Mills in Regrinding Circuits, Doctorate Dissertation, Hacettepe University, Turkey, 192.
  • 29. Gökçen, H.S., Cayirli, S., Ucbas, Y., Kayaci, K., 2012. Dry Grinding of Sodium Feldspar in a Stirred Ball Mill, 13th Int. Miner. Process. Symp. Bodrum, Turkey, 21–28.
  • 30. Cayirli, S., Gökçen, H.S., Bozkurt, V., Ucbas, Y., 2013. Dry Fine Grinding of Mica in a Stirred Ball Mill, 13th Eur. Symp. Comminution Classif., Germany, 364–368.
  • 31. Cayirli, S., Gökçen, H.S., Bozkurt, V., Ucbas, Y., 2014. Effects of Grinding Parameters on Mica Grinding in a Stirred Ball Mill, 15th Int. Miner. Process. Symp. Exhib. İstanbul, Turkey, 19–21.
  • 32. Zheng, J., Harris, C.C., Somasundaran, P., 1997. The Effect of Additives on Stirred Media Milling of Limestone, Powder Technol., 91, 173-179.
  • 33. He, M., Forssberg, E., 2007. Influence of Slurry Rheology on Stirred Media Milling of Quartzite, Int. J. Miner. Process., 84, 240-251.
  • 34. Toraman, O.Y., Katircioglu, D., 2011. A Study on the Effect of Process Parameters in Stirred Ball Mill, Adv. Powder Technol., 22, 26-30.
  • 35. Toraman, O.Y., 2015. Production of Submicron Particles by Mechanical Treatment: Width of Particle Size Distribution and Fineness of Product, Part. Sci. Technol., 33, 666-670.

Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill

Yıl 2018, Cilt: 33 Sayı: 3, 225 - 236, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.504714

Öz

This study focused on ultra-fine grinding of calcite powder (CaCO3) using a vertical stirred ball mill. The influences of various operating parameters such as stirrer speed (rpm), ball filling ratio (J), powder filling ratio (fc), solid ratio (wt.%) and grinding time were studied under wet conditions. The experiments were carried out in a batch mode of operation. The experimental results were evaluated based upon product size (d50), specific surface area (m2/g) and width of particle size distribution. As a result of this work, the optimum grinding test conditions were found to be 840 rpm for stirrer speed, 0.70 for ball filling ratio, 0.100 for powder filling ratio, 50% for solid ratio and 20 min for grinding time. It was also observed that stirrer speed, ball filling ratio and grinding time were directly proportional whereas powder filling ratio and solid ratio were inversely proportional to product fineness and specific surface area. The width of particle size distribution decreased with decreasing product size for all grinding conditions. 

Kaynakça

  • 1. Wang, Y., Forssberg, E., 2007. Enhancement of Energy Efficiency for Mechanical Production of Fine and Ultra-fine Particles in Comminution, China Particuology, 5, 193–201.
  • 2. Stein, J., 2005. Ultrafine Dry Grinding with Media Mills, Hosokawa Alp. AG, Augsbg. 17, 1–6.
  • 3. Stenger, F., Mende, S., Schwedes, J., Peukert, W., 2005. Nanomilling in Stirred Media Mills, Chem. Eng. Sci., 60, 4557–4565.
  • 4. Zheng, J., Harris, C.C., Somasundaran, P., 1996. A Study on Grinding and Energy Input in Stirred Media Mills, Powder Technol., 86, 171–178.
  • 5. Kwade, A., 1999. Wet Comminution in Stirred Media Mills-Research and its Practical Application, Powder Technol., 105, 14–20.
  • 6. Pilevneli, C.C., Kizgut, S., Toroglu, I., Çuhadaroglu, D., Yigit, E., 2004. Open and Closed Circuit Dry Grinding of Cement Mill Rejects in a Pilot Scale Vertical Stirred Mill, Powder Technol., 139, 165–174.
  • 7. Choi, H., Lee, W., Kim, D.U., Kumar, S., Kim, S.S., Chung, H.S., Kim, J.H., Ahn, Y.C., 2010. Effect of Grinding Aids on the Grinding Energy Consumed During Grinding of Calcite in a Stirred Ball Mill, Miner. Eng., 23, 54–57.
  • 8. Gokcen, H.S., Cayirli, S., Ucbas, Y., Kayaci, K., 2015. The Effect of Grinding Aids on Dry Micro Fine Grinding of Feldspar, Int. J. Miner. Process., 136, 42–44.
  • 9. Kinnarinen, T., Tuunila, R., Huhtanen, M., Häkkinen, A., Kejik, P., Sverak, T., 2015. Wet Grinding of CaCO3 with a Stirred Media Mill: Influence of Obtained Particle Size Distributions on Pressure Filtration Properties, Powder Technol., 273, 54-61.
  • 10. Wang, Y., Forssberg, E., 2000. Technical note Product Size Distribution in Stirred Media Mills, Miner. Eng., 13, 459–465.
  • 11. Jankovic, A., Sinclair, S., 2006. The Shape of Product Size Distributions in Stirred Mills, Miner. Eng., 19, 1528–1536.
  • 12. Johnson, R., Thiele, E., French, R., 1997. Light-scattering Efficiency of White Pigments: an Analysis of Model Core-shell Pigments vs. optimized rutile TiO2, Tappi J., 80, 233–239.
  • 13. Karbstein, H., Mueller, F., Polke, R., 1996. Producing Suspensions with Steep Particle Size Distributions in Fines Ranges, Erzeugung von Suspensionen mit steilen Partikelgroessenverteilungen im Feinstbereich, Aufbereitungs-Technik., 36, 464-473.
  • 14. Adi, H., Larson, I., Stewart, P., 2007. Use of Milling and Wet Sieving to Produce Narrow Particle Size Distributions of Lactose Monohydrate in the Sub-sieve Range, Powder Technol., 179, 95–99. 15. Nakach, M., Authelin, J.R., Chamayou, A., Dodds, J., 2004. Comparison of Various Milling Technologies for Grinding Pharmaceutical Powders, Int. J. Miner. Process., 74, 173-181.
  • 16. Nesset, D.P., Radziszewski, J.A., Hardie, P., Leroux, C., 2006. Assessing the Performance and Efficiency of Fine Grinding Technologies, Proc. 38th Annu. Can. Miner. Process. Oper. Conf., Ottawa, Canada, 283–310. 17. Werner, R., 2000. Effect of Extenders with Narrow and Broad Particle Size Distributions on the Properties of Coatings, J. Coatings Technol., 72, 71–76.
  • 18. Kotake, N., Kuboki, M., Kiya, S., Kanda, Y., 2011. Influence of Dry and Wet Grinding Conditions on Fineness and Shape of Particle Size Distribution of Product in a Ball Mill, Adv. Powder Technol., 22, 86-92.
  • 19. Jayasundara, C.T., Yang, R.Y., Yu, A.B., Rubenstein, J., 2010. Effects of Disc Rotation Speed and Media Loading on Particle Flow and Grinding Performance in a Horizontal Stirred Mill, Int. J. Miner. Process., 96, 27–35.
  • 20. Kwade, A., 2013. Basic Course Grinding and Dispersing with Stirred Media Mills (Third Edition), Technische Universitat Braunschweig, p. 423, Germany.
  • 21. Wang, Y., Forssberg, E., Sachweh, J., 2004. Dry Fine Comminution in a Stirred Media Mill-Maxx Mill??, Int. J. Miner. Process., 74, 65-74.
  • 22. Bel Fadhel, H., Frances, C., 2001. Wet Batch Grinding of Alumina Hydrate in a Stirred Bead Mill, Powder Technol., 119, 257–268.
  • 23. Altun, O., Benzer, H., Enderle, U., 2013. Effects of Operating Parameters on the Efficiency of Dry Stirred Milling, Miner. Eng., 43–44, 58–66.
  • 24. Suryanarayana, C., 2001. Mechanical Alloying and Milling, Prog. Mater. Sci., 46, 1–184.
  • 25. Orumwense, A.O., 2005. The Effect of Media Type on Regrinding with Stirred Mills, Minerals and Metallurgical Processing, 1, 43-48.
  • 26. Gao, M., Holmes, R., Pease, J., 2006. The Latest Developments in Fine and Ultrafine Grinding Technologies, Proc. 23rd Int. Miner. Process. Congr., Turkey, 30-37.
  • 27. Sivamohan, R., Vachot, P., 1990. A Comparative Study of Stirred and Vibratory Mills for the Fine Grinding of Muscovite, Wollastonite and Kaolinite, Powder Technol., 61, 119–129.
  • 28. Dikmen, S., 2008. Modelling of the Performance of Stirred Media Mills in Regrinding Circuits, Doctorate Dissertation, Hacettepe University, Turkey, 192.
  • 29. Gökçen, H.S., Cayirli, S., Ucbas, Y., Kayaci, K., 2012. Dry Grinding of Sodium Feldspar in a Stirred Ball Mill, 13th Int. Miner. Process. Symp. Bodrum, Turkey, 21–28.
  • 30. Cayirli, S., Gökçen, H.S., Bozkurt, V., Ucbas, Y., 2013. Dry Fine Grinding of Mica in a Stirred Ball Mill, 13th Eur. Symp. Comminution Classif., Germany, 364–368.
  • 31. Cayirli, S., Gökçen, H.S., Bozkurt, V., Ucbas, Y., 2014. Effects of Grinding Parameters on Mica Grinding in a Stirred Ball Mill, 15th Int. Miner. Process. Symp. Exhib. İstanbul, Turkey, 19–21.
  • 32. Zheng, J., Harris, C.C., Somasundaran, P., 1997. The Effect of Additives on Stirred Media Milling of Limestone, Powder Technol., 91, 173-179.
  • 33. He, M., Forssberg, E., 2007. Influence of Slurry Rheology on Stirred Media Milling of Quartzite, Int. J. Miner. Process., 84, 240-251.
  • 34. Toraman, O.Y., Katircioglu, D., 2011. A Study on the Effect of Process Parameters in Stirred Ball Mill, Adv. Powder Technol., 22, 26-30.
  • 35. Toraman, O.Y., 2015. Production of Submicron Particles by Mechanical Treatment: Width of Particle Size Distribution and Fineness of Product, Part. Sci. Technol., 33, 666-670.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mimarlık, Mühendislik
Bölüm Makaleler
Yazarlar

Serkan Çayırlı

Yayımlanma Tarihi 30 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 3

Kaynak Göster

APA Çayırlı, S. (2018). Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(3), 225-236. https://doi.org/10.21605/cukurovaummfd.504714
AMA Çayırlı S. Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill. cukurovaummfd. Eylül 2018;33(3):225-236. doi:10.21605/cukurovaummfd.504714
Chicago Çayırlı, Serkan. “Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, sy. 3 (Eylül 2018): 225-36. https://doi.org/10.21605/cukurovaummfd.504714.
EndNote Çayırlı S (01 Eylül 2018) Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 3 225–236.
IEEE S. Çayırlı, “Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill”, cukurovaummfd, c. 33, sy. 3, ss. 225–236, 2018, doi: 10.21605/cukurovaummfd.504714.
ISNAD Çayırlı, Serkan. “Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/3 (Eylül 2018), 225-236. https://doi.org/10.21605/cukurovaummfd.504714.
JAMA Çayırlı S. Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill. cukurovaummfd. 2018;33:225–236.
MLA Çayırlı, Serkan. “Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2018, ss. 225-36, doi:10.21605/cukurovaummfd.504714.
Vancouver Çayırlı S. Optimization of Wet Grinding Parameters of Calcite Ore in Stirred Ball Mill. cukurovaummfd. 2018;33(3):225-36.