Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Severe Plastic Deformation on the Electrical Conductivity of CuZn40Pb2

Yıl 2018, Cilt: 33 Sayı: 3, 237 - 244, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.504730

Öz

In this study, the effects of microstructure and mechanical properties on electrical properties of CuZn40Pb2 brass material were investigated by using both a commercial quality and an equal channel angular pressing (ECAP) process. Especially, although it is not known that the electrical and corrosion properties of Cu-based materials are good, it is the basis of studying how mechanical and physical properties of the size reductions may be affected. As is known, commercially available brass alloys are used industrially in the shipbuilding industry, the automotive industry and many other industrial applications. In this study, the grain size of CuZn40Pb2 material decreased and the hardness properties increased at 34% and electrical properties decreased at 3% with ECAP technique. 

Kaynakça

  • 1. Kim, H.S., Kim, W.Y., Song, K.H., 2012. Effect of Post-heat-treatment in ECAP Prpcessed Cu-40%Zn Brass, Journal of Alloys and Compounds, 536, 200-203.
  • 2. Xia, Z., Szklarska-Smialowska, Z., 1990. Pitting of Admiralty Brass, Corrosion, 46, 85-88.
  • 3. Brooks, C.R., 1982. Heat Treatment, Structure and Properties of Nonferrous Alloy, American Society for Metals, Metals Park, Ohio, 139-142.
  • 4. Straumal, P.B., Wegner, M., Shangina, D.V., Kogtenkova, O.A., Kilmametov, A., Divinski, S.V., Dobatkin, S.V., Wilde, G., 2017. Diffusion of 63Ni in Severely Deformed Ultrafine Grained Cu-based Alloys, Scripta Materialia, 127, 141-145.
  • 5. Chinh, N.Q., Valiev, R.Z., Sauvage, X., Varga, G., Havancsák, K., Kawasaki, M., Straumal, B.B., Langdon, T.G., 2014. Grain Boundary Phenomena in an Ultrafine-grained Al-Zn Alloy with Improved Mechanical Behavior for Micro-devices, Advanced Engineering Materials, 16, 1000–1009.
  • 6. Purcek, G., Yanar, H., Saray, O., Karaman, I., Maier, H.J., 2014. Effect of Precipitation on Mechanical and Wear Properties of Ultrafinegrained Cu-Cr-Zr Alloy, Wear 311, 149–158.
  • 7. Islamgaliev, R.K., Nesterov, K.M., Bourgon, J., Champion, Y., Valiev, R.Z., 2014. Nanostructured Cu-Cr Alloy with High Strength and Electrical Conductivity, Journal of Applied Physics, 115, 194-301.
  • 8. Xu, C.Z., Wang, Q.J., Zheng, M.S., Zhu, J.W., Li, J.D., Huang, M.Q., Jia, Q.M., Du, Z.Z., 2007. Microstructure and Properties of Ultra- Fine Grain Cu-Cr Alloy Prepared by Equalchannel Angular Pressing, Materials Science and Engineering A, 459, 303–308.
  • 9. Shangina, D., Maksimenkova, Y., Bochvar, N., Serebryany, V.N., Raab, G., Vinogradov, A., Skrotzki, W., Dobatkin, S., 2014. Structure and Properties of Cu Alloys Alloying with Cr and Hf After Equal Channel Angular Pressing, Advanced Materials Research, 922, 651–656.
  • 10. Wang, Q.J., Xu, C.Z., Zheng, M.S., Zhu, J.W., Du, Z.Z., 2008. Fatigue Crack İnitiation life Prediction of Ultra-fine Grain Chromium– Bronze Prepared by Equal-channel Angular Pressing, Materials Science and Engineering A, 496, 434–438.
  • 11. Dobatkin, S.V., Shangina, D.V., Bochvar, N.R., 2015. Aging Processes in Ultrafinegrained Low-alloyed Bronzes Subjected to Equal Channel Angular Pressing, Advanced Engineering Materials, 17, 1862–1868.
  • 12. Mishnev, R., Shakhova, I., Belyakov, A., Kaibyshev, R., 2015. Deformation Microstructures, Strengthening Mechanisms, and Electrical Conductivity in a Cu–Cr–Zr alloy, Materials Science and Engineering A, 629, 29–40.
  • 13. Shangina, D.V., Gubicza, J., Dodony, E., Bochvar, N.R., Straumal, P.B., Tabachkova, N.Y., Dobatkin, S.V., 2014. Improvement of Strength and Conductivity in Cu-alloys with the Application of High Pressure Torsion and Subsequent Heat-treatments, Journal of Materials Science, 49, 6674–6681.
  • 14. Kaya, H., Ucar, M., 2016. The Effect of Mechanical Properties on Fatigue Behavior of Ecaped AA7075, High Temperature Materials and Processes, 35(3), 225-234.
  • 15. Horita, Z., Fujinami, T., Langdon, T.G., 2001. The Potential for Scaling ECAP: Effect of Sample Size on Grain Refinement and Mechanical Properties, Materials Science and Engineering A, 318, 34–41.
  • 16. Kaya, H., Ucar, M., Cengiz, A., Samur, R., Ozyurek, D. Caliskan, A., 2014. Novel Moulding Technigue for ECAP Process and Effects on Hardness of AA7075, Mechanika, 20, 5–10.
  • 17. Kim, W.J., Chung, C.S., Ma, D.S., Hong, S.I., Kim, H.K., 2003. Optimization of Strength and Ductility of 2024 Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging, Scripta Materialia, 49, 333–338.
  • 18. Segal, V.M., 1995. Materials Processing by Simple Shear, Materials Science and Engineering A, 197, 157–164.
  • 19. Tolaminejad, B., Dehghani, K., 2012. Microstructural Characterization and Mechanical Properties of Nanostructured AA1070 Aluminum After Equal Channel Angular Extrusion, Journal of Materials and Design, 34, 285–292. 20. Zhu, Y.T., Lowe, T.C., 2000. Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Materials Science and Engineering A, 291, 46–53.
  • 21. Das, P., Jayaganthan, R., Chowdhury, T., Singh, I.V., 2011. Fatigue Behaviour and Crack Growth Rate of Cryorolled Al 7075 Alloy, Materials Science and Engineering A, 528, 7124–7132.
  • 22. Ferrasse, S., Segal, S.M. 1997. Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion, Metal Materials Transactions A, 28, 1047–1057.
  • 23. Horita, Z., Fujinami, T., 2000. Equal-channel Angular Pressing of Commercial Aluminum Alloys: Grain Refinement, Thermal Stability and Tensile Properties, Metall Materials Transactions A, 31, 691–701.
  • 24. Semiatin, S.L., Berbon, P.B., Langdon, T.G., 2001. Deformation Heating and its Effect on Grain Size Evolution During Equal Channel Angular Extrusion, Scripta Materialia, 44, 135–140.
  • 25. Nakashima, K., Horita, Z., Nemoto, M., Langdon, T.G., 2000. Development of a Multi- Pass Facility for Equal-channel. Angular Pressing to High Total Strains, Materials Science and Engineering A, 281, 82–87.
  • 26. Tong, L.B., Zheng, M.Y., Hu, X.S., Wu, K., Xu, S.W., Kamado, S., Kojima, Y., 2010. Influence of ECAP Routes on Microstructure and Mechanical Properties of Mg–Zn–Ca alloy, Mater. Sci. Eng. A, 527, 4250–4256.
  • 27. Kim, I., Kim, J., Shin, D.H., Lee, C.S., Hwang, S.K., 2003. Effects of Equal Channel Angular Pressing Temperature on Deformation Structures of Pure Ti, Materials Science and Engineering A, 342, 302–310.
  • 28. Lapovok, R., Thomson, P.F., Cottam, R., Estrin, Y., 2005. Processing Routes Leading to Superplastic Behaviour of Magnesium Alloy ZK60, Materials Science and Engineering A, 410–411, 390–393.
  • 29. Torre, F.D., Lapovok, R., Sandlin, J., Thomson, P.F., Davies, C.H.J., Pereloma, E.V., 2004. Microstructures and Properties of Copper Processed by Equal Channel Angular Extrusion for 1–16 Passes, Acta Materialia, 52, 4819–4832.
  • 30. Abbas, S.F., Seo, S., Park. K., Kim, B., 2017. Effect of Grain Size on the Electrical Conductivity of Copper-iron Alloys, Journal of Alloys and Compounds, 720, 8–16.
  • 31. Majchrowicz, K., Pakiela, Z., Chrominski, W., Kulczyk, M., 2018. Enhanced Strength and Electrical Conductivity of Ultrafine-grained Al-Mg-Si Alloy Processed by Hydrostatic Extrusion, Materials Characterization, 135, 104–114.
  • 32. Atapek, Ş.H., Klinski-Wetzel, K., Heilmaier, M., 2012. Effect of Microstructure on the Electrical Conductivity of Cast and Aged CuNiSiCr Alloy, III. İleri Teknolojiler Çalıştayı, Bildiriler Kitabı, 433-443.
  • 33. Lipinska, M., Bazarnik, P., Lewandowska, M., 2016. The Influence of Severe Plastic Deformation Processes on Electrical Conductivity of Commercially Pure Aluminium and 5483 Aluminium Alloy, Archives of Civil and Mechanical Engineering, 16, 717–723.

CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi

Yıl 2018, Cilt: 33 Sayı: 3, 237 - 244, 30.09.2018
https://doi.org/10.21605/cukurovaummfd.504730

Öz

Bu çalışmada, CuZn40Pb2 pirinç malzemesi hem ticari nitelikte hem de eşit kanal açısal presleme (EKAP) işlem metodu ile tek pas kullanılarak aşırı plastik deformasyonu oluşturularak elektriksel özellik üzerine mikroyapı ve mekanik özelliklerin etkisi incelenmiştir. Özellikle Cu bazlı malzemelerin elektriksel ve korozyon özelliklerinin iyi olduğu bilinmesine karşın tane boyutlarında elde edilebilecek küçülmelerin mekanik ve fiziksel özelliklerini nasıl etkilemiş olabileceği çalışmanın temelini oluşturmaktadır. Bilindiği üzere ticari özelliklerde pirinç alaşımları endüstriyel anlamda gemi sanayiinde, otomotiv sanayiinde ve diğer birçok endüstriyel alanda uygulama içerinde kullanılmaktadırlar. Bu kapsamda yapılan çalışma ile EKAP tekniği kullanılarak CuZn40Pb2 malzemesi tane boyutları ufaltılmış, sertlik özelliklerinde %34 artış ve elektriksel özelliklerinde ise %3 azalma göstermiştir. 

Kaynakça

  • 1. Kim, H.S., Kim, W.Y., Song, K.H., 2012. Effect of Post-heat-treatment in ECAP Prpcessed Cu-40%Zn Brass, Journal of Alloys and Compounds, 536, 200-203.
  • 2. Xia, Z., Szklarska-Smialowska, Z., 1990. Pitting of Admiralty Brass, Corrosion, 46, 85-88.
  • 3. Brooks, C.R., 1982. Heat Treatment, Structure and Properties of Nonferrous Alloy, American Society for Metals, Metals Park, Ohio, 139-142.
  • 4. Straumal, P.B., Wegner, M., Shangina, D.V., Kogtenkova, O.A., Kilmametov, A., Divinski, S.V., Dobatkin, S.V., Wilde, G., 2017. Diffusion of 63Ni in Severely Deformed Ultrafine Grained Cu-based Alloys, Scripta Materialia, 127, 141-145.
  • 5. Chinh, N.Q., Valiev, R.Z., Sauvage, X., Varga, G., Havancsák, K., Kawasaki, M., Straumal, B.B., Langdon, T.G., 2014. Grain Boundary Phenomena in an Ultrafine-grained Al-Zn Alloy with Improved Mechanical Behavior for Micro-devices, Advanced Engineering Materials, 16, 1000–1009.
  • 6. Purcek, G., Yanar, H., Saray, O., Karaman, I., Maier, H.J., 2014. Effect of Precipitation on Mechanical and Wear Properties of Ultrafinegrained Cu-Cr-Zr Alloy, Wear 311, 149–158.
  • 7. Islamgaliev, R.K., Nesterov, K.M., Bourgon, J., Champion, Y., Valiev, R.Z., 2014. Nanostructured Cu-Cr Alloy with High Strength and Electrical Conductivity, Journal of Applied Physics, 115, 194-301.
  • 8. Xu, C.Z., Wang, Q.J., Zheng, M.S., Zhu, J.W., Li, J.D., Huang, M.Q., Jia, Q.M., Du, Z.Z., 2007. Microstructure and Properties of Ultra- Fine Grain Cu-Cr Alloy Prepared by Equalchannel Angular Pressing, Materials Science and Engineering A, 459, 303–308.
  • 9. Shangina, D., Maksimenkova, Y., Bochvar, N., Serebryany, V.N., Raab, G., Vinogradov, A., Skrotzki, W., Dobatkin, S., 2014. Structure and Properties of Cu Alloys Alloying with Cr and Hf After Equal Channel Angular Pressing, Advanced Materials Research, 922, 651–656.
  • 10. Wang, Q.J., Xu, C.Z., Zheng, M.S., Zhu, J.W., Du, Z.Z., 2008. Fatigue Crack İnitiation life Prediction of Ultra-fine Grain Chromium– Bronze Prepared by Equal-channel Angular Pressing, Materials Science and Engineering A, 496, 434–438.
  • 11. Dobatkin, S.V., Shangina, D.V., Bochvar, N.R., 2015. Aging Processes in Ultrafinegrained Low-alloyed Bronzes Subjected to Equal Channel Angular Pressing, Advanced Engineering Materials, 17, 1862–1868.
  • 12. Mishnev, R., Shakhova, I., Belyakov, A., Kaibyshev, R., 2015. Deformation Microstructures, Strengthening Mechanisms, and Electrical Conductivity in a Cu–Cr–Zr alloy, Materials Science and Engineering A, 629, 29–40.
  • 13. Shangina, D.V., Gubicza, J., Dodony, E., Bochvar, N.R., Straumal, P.B., Tabachkova, N.Y., Dobatkin, S.V., 2014. Improvement of Strength and Conductivity in Cu-alloys with the Application of High Pressure Torsion and Subsequent Heat-treatments, Journal of Materials Science, 49, 6674–6681.
  • 14. Kaya, H., Ucar, M., 2016. The Effect of Mechanical Properties on Fatigue Behavior of Ecaped AA7075, High Temperature Materials and Processes, 35(3), 225-234.
  • 15. Horita, Z., Fujinami, T., Langdon, T.G., 2001. The Potential for Scaling ECAP: Effect of Sample Size on Grain Refinement and Mechanical Properties, Materials Science and Engineering A, 318, 34–41.
  • 16. Kaya, H., Ucar, M., Cengiz, A., Samur, R., Ozyurek, D. Caliskan, A., 2014. Novel Moulding Technigue for ECAP Process and Effects on Hardness of AA7075, Mechanika, 20, 5–10.
  • 17. Kim, W.J., Chung, C.S., Ma, D.S., Hong, S.I., Kim, H.K., 2003. Optimization of Strength and Ductility of 2024 Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging, Scripta Materialia, 49, 333–338.
  • 18. Segal, V.M., 1995. Materials Processing by Simple Shear, Materials Science and Engineering A, 197, 157–164.
  • 19. Tolaminejad, B., Dehghani, K., 2012. Microstructural Characterization and Mechanical Properties of Nanostructured AA1070 Aluminum After Equal Channel Angular Extrusion, Journal of Materials and Design, 34, 285–292. 20. Zhu, Y.T., Lowe, T.C., 2000. Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Materials Science and Engineering A, 291, 46–53.
  • 21. Das, P., Jayaganthan, R., Chowdhury, T., Singh, I.V., 2011. Fatigue Behaviour and Crack Growth Rate of Cryorolled Al 7075 Alloy, Materials Science and Engineering A, 528, 7124–7132.
  • 22. Ferrasse, S., Segal, S.M. 1997. Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion, Metal Materials Transactions A, 28, 1047–1057.
  • 23. Horita, Z., Fujinami, T., 2000. Equal-channel Angular Pressing of Commercial Aluminum Alloys: Grain Refinement, Thermal Stability and Tensile Properties, Metall Materials Transactions A, 31, 691–701.
  • 24. Semiatin, S.L., Berbon, P.B., Langdon, T.G., 2001. Deformation Heating and its Effect on Grain Size Evolution During Equal Channel Angular Extrusion, Scripta Materialia, 44, 135–140.
  • 25. Nakashima, K., Horita, Z., Nemoto, M., Langdon, T.G., 2000. Development of a Multi- Pass Facility for Equal-channel. Angular Pressing to High Total Strains, Materials Science and Engineering A, 281, 82–87.
  • 26. Tong, L.B., Zheng, M.Y., Hu, X.S., Wu, K., Xu, S.W., Kamado, S., Kojima, Y., 2010. Influence of ECAP Routes on Microstructure and Mechanical Properties of Mg–Zn–Ca alloy, Mater. Sci. Eng. A, 527, 4250–4256.
  • 27. Kim, I., Kim, J., Shin, D.H., Lee, C.S., Hwang, S.K., 2003. Effects of Equal Channel Angular Pressing Temperature on Deformation Structures of Pure Ti, Materials Science and Engineering A, 342, 302–310.
  • 28. Lapovok, R., Thomson, P.F., Cottam, R., Estrin, Y., 2005. Processing Routes Leading to Superplastic Behaviour of Magnesium Alloy ZK60, Materials Science and Engineering A, 410–411, 390–393.
  • 29. Torre, F.D., Lapovok, R., Sandlin, J., Thomson, P.F., Davies, C.H.J., Pereloma, E.V., 2004. Microstructures and Properties of Copper Processed by Equal Channel Angular Extrusion for 1–16 Passes, Acta Materialia, 52, 4819–4832.
  • 30. Abbas, S.F., Seo, S., Park. K., Kim, B., 2017. Effect of Grain Size on the Electrical Conductivity of Copper-iron Alloys, Journal of Alloys and Compounds, 720, 8–16.
  • 31. Majchrowicz, K., Pakiela, Z., Chrominski, W., Kulczyk, M., 2018. Enhanced Strength and Electrical Conductivity of Ultrafine-grained Al-Mg-Si Alloy Processed by Hydrostatic Extrusion, Materials Characterization, 135, 104–114.
  • 32. Atapek, Ş.H., Klinski-Wetzel, K., Heilmaier, M., 2012. Effect of Microstructure on the Electrical Conductivity of Cast and Aged CuNiSiCr Alloy, III. İleri Teknolojiler Çalıştayı, Bildiriler Kitabı, 433-443.
  • 33. Lipinska, M., Bazarnik, P., Lewandowska, M., 2016. The Influence of Severe Plastic Deformation Processes on Electrical Conductivity of Commercially Pure Aluminium and 5483 Aluminium Alloy, Archives of Civil and Mechanical Engineering, 16, 717–723.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık, Mühendislik
Bölüm Makaleler
Yazarlar

Hasan Kaya

Yayımlanma Tarihi 30 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 3

Kaynak Göster

APA Kaya, H. (2018). CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(3), 237-244. https://doi.org/10.21605/cukurovaummfd.504730
AMA Kaya H. CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi. cukurovaummfd. Eylül 2018;33(3):237-244. doi:10.21605/cukurovaummfd.504730
Chicago Kaya, Hasan. “CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33, sy. 3 (Eylül 2018): 237-44. https://doi.org/10.21605/cukurovaummfd.504730.
EndNote Kaya H (01 Eylül 2018) CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33 3 237–244.
IEEE H. Kaya, “CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi”, cukurovaummfd, c. 33, sy. 3, ss. 237–244, 2018, doi: 10.21605/cukurovaummfd.504730.
ISNAD Kaya, Hasan. “CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 33/3 (Eylül 2018), 237-244. https://doi.org/10.21605/cukurovaummfd.504730.
JAMA Kaya H. CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi. cukurovaummfd. 2018;33:237–244.
MLA Kaya, Hasan. “CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 33, sy. 3, 2018, ss. 237-44, doi:10.21605/cukurovaummfd.504730.
Vancouver Kaya H. CuZn40Pb2’nin Elektriksel İletkenliği Üzerine Aşırı Plastik Deformasyonun Etkisi. cukurovaummfd. 2018;33(3):237-44.