Araştırma Makalesi
BibTex RIS Kaynak Göster

Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles

Yıl 2019, Cilt: 34 Sayı: 1, 33 - 42, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601225

Öz

Commercially, many types of lifts and ramps are available to help the wheelchair users getting on and off the vehicles. In this study, a foldable wheelchair lift, which has a single arm was analysed by Finite Element Method according to specified maximum carrying mass of 300 kg in Directive 2001/85/EC. Examination was carried out on the manufactured wheelchair lift to validate the result of Finite Element Analysis. Initial analyses have shown that the lift is insufficient to be safe. Hence a modification was performed on the lift. After the modification, maximum von-Mises stress was calculated as 300.15 MPa in the cantilever beam of the platform which is produced by S355JR quality steel. The largest deformation was measured as 82.4 mm and 78.3 mm on the manufactured lift and on the model, respectively. Modal analysis indicates the result of the first eight modes occurred in low frequencies.

Kaynakça

  • 1. Turkish Statistical Institute, 2002. Turkey Disability Survey, Ankara. (Cm 2913).
  • 2. Association of Social Rehabilitation, 2013. Current Status of the Disabilities and Life Satisfaction Survey. [online] http://www.trder.org/download/local_activities_output/12-%20 Engelli%20Anketi%20%C3%87al%C4%B1% C5%9Fmas%C4%B1.pdf (Accessed 24 April 2018).
  • 3. Stillman, M.D., Bertocci, G., Smalley, C., Williams, S., Frost, K.L., 2017. Healthcare Utilization and Associated Barriers Experienced by Wheelchair Users: A Pilot Study, Disability and Health Journal, 10(4), 502–508.
  • 4. Hiremath, S.V., Intille, S.S., Kelleher, A., Cooper, R.A., Ding, D., 2015. Detection of Physical Activities Using a Physical Activity Monitor System for Wheelchair Users, Medical Engineering and Physics. Institute of Physics and Engineering in Medicine, 37(1), 68–76.
  • 5. Gaete-Reyes, M., 2015. Citizenship and the Embodied Practice of Wheelchair Use, Geoforum, 64, 351–361.
  • 6. Davison, P., Sharpe, M., Wade, D., Bass, C., 1999. Wheelchair Patients with Nonorganic Disease: A Psychological Inquiry, Journal of Psychosomatic Research, 47(1), 93–103.
  • 7. Bermond, F., Attali, X., Dolivet, C., 2010. Floor Anchorage Load and Safety Space for Adult Wheelchair Users During a Crash, Irbm, 31(5–6), 289–298.
  • 8. Kalyanasundaram, S., Lowe, A., Watters, A. J., 2006. Finite Element Analysis and Optimization of Composite Wheelchair Wheels, Composite Structures, 75(1–4), 393–399.
  • 9. Topaç, M. M., Ercan, S., Kuralay, N. S., 2012. Fatigue Life Prediction of a Heavy Vehicle Steel Wheel under Radial Loads by Using Finite Element Analysis, Engineering Failure Analysis, 20, 67–79.
  • 10. Han, T., Huang, C., Tan, A.C.C., 2014. Experimental and Finite Element Analysis to İdentify the Source of Vibration of a Coach, Engineering Failure Analysis, 44, 100–109.
  • 11. Chandru, B. T., Suresh, P. M., 2017. Finite Element and Experimental Modal Analysis of Car Roof with and without Damper, Materials Today: Proceedings, 4(10), 11237–11244.
  • 12. Ozcanli, M., Dede, G., 2018. Evaluation of Advanced Steel Usage on Seat Construction to Reduce Bus Weight in Compliance with FMVSS and APTA Regulations, International Journal of Heavy Vehicle Systems, 25, 235-247.
  • 13. Araújo, D.C., e Castro, L.C., Shzu M.A.M., Avila, S.M., de Morais, M.V.G., 2017. Modal İdentification of a Wind Turbine, Procedia Engineering, 199, 2250–2255.
  • 14. Wei, L., Cheng, H., Li, J., 2012. Modal Analysis of a Cable-Stayed Bridge, Procedia Engineering, 31, 481–486.
  • 15. Wang, R., Han, T., Wang, W., Xue Y., Fu D., 2018. Fracture Analysis and İmprovement of the Main Shaft of Wind Turbine Based on Finite Element Method. Advances in Mechanical Engineering, 10(4), 1-9.
  • 16. Weis, P., Kucera, L., Pechac, P., Mocilan, M., 2017. Modal Analysis of Gearbox Housing with Applied Load, Procedia Engineering, 192, 953–958.

M-Sınıfı Araçlar için Katlanabilir ve Tek Kollu Tekerlekli Sandalye Asansörü Tasarımı ve Sonlu Eleman Analizi

Yıl 2019, Cilt: 34 Sayı: 1, 33 - 42, 31.03.2019
https://doi.org/10.21605/cukurovaummfd.601225

Öz

Ticari olarak, tekerlekli sandalye kullanıcılarının araçlara girip çıkmasına yardımcı olmak için birçok asansör ve rampa mevcuttur. Bu çalışmada, tek kollu katlanabilir tekerlekli sandalye asansörü, 2001/85/EC Direktifinde belirtilen maksimum 300 kg kütleyi taşıyacak şekilde Sonlu Elemanlar Yöntemi ile analiz edilmiştir. Sonlu Elemanlar Analizinin sonucunu doğrulamak için üretilen tekerlekli sandalye asansörü üzerinde inceleme yapılmıştır. Yapılan ilk analizler, asansörün güvenli olabilmesi için yetersiz kaldığını göstermiştir. Bu nedenle asansörde değişiklik yapılmıştır. Modifikasyondan sonra, S355JR kalite çelik tarafından üretilen platformun konsol kirişinde maksimum von-Mises gerilimi 300,15 MPa olarak hesaplanmıştır. En yüksek deformasyon, üretilen asansörde ve modelde sırasıyla 82,4 mm ve 78,3 mm olarak ölçülmüştür. Modal analiz, düşük frekanslarda meydana gelen ilk sekiz modun sonucunu göstermektedir.

Kaynakça

  • 1. Turkish Statistical Institute, 2002. Turkey Disability Survey, Ankara. (Cm 2913).
  • 2. Association of Social Rehabilitation, 2013. Current Status of the Disabilities and Life Satisfaction Survey. [online] http://www.trder.org/download/local_activities_output/12-%20 Engelli%20Anketi%20%C3%87al%C4%B1% C5%9Fmas%C4%B1.pdf (Accessed 24 April 2018).
  • 3. Stillman, M.D., Bertocci, G., Smalley, C., Williams, S., Frost, K.L., 2017. Healthcare Utilization and Associated Barriers Experienced by Wheelchair Users: A Pilot Study, Disability and Health Journal, 10(4), 502–508.
  • 4. Hiremath, S.V., Intille, S.S., Kelleher, A., Cooper, R.A., Ding, D., 2015. Detection of Physical Activities Using a Physical Activity Monitor System for Wheelchair Users, Medical Engineering and Physics. Institute of Physics and Engineering in Medicine, 37(1), 68–76.
  • 5. Gaete-Reyes, M., 2015. Citizenship and the Embodied Practice of Wheelchair Use, Geoforum, 64, 351–361.
  • 6. Davison, P., Sharpe, M., Wade, D., Bass, C., 1999. Wheelchair Patients with Nonorganic Disease: A Psychological Inquiry, Journal of Psychosomatic Research, 47(1), 93–103.
  • 7. Bermond, F., Attali, X., Dolivet, C., 2010. Floor Anchorage Load and Safety Space for Adult Wheelchair Users During a Crash, Irbm, 31(5–6), 289–298.
  • 8. Kalyanasundaram, S., Lowe, A., Watters, A. J., 2006. Finite Element Analysis and Optimization of Composite Wheelchair Wheels, Composite Structures, 75(1–4), 393–399.
  • 9. Topaç, M. M., Ercan, S., Kuralay, N. S., 2012. Fatigue Life Prediction of a Heavy Vehicle Steel Wheel under Radial Loads by Using Finite Element Analysis, Engineering Failure Analysis, 20, 67–79.
  • 10. Han, T., Huang, C., Tan, A.C.C., 2014. Experimental and Finite Element Analysis to İdentify the Source of Vibration of a Coach, Engineering Failure Analysis, 44, 100–109.
  • 11. Chandru, B. T., Suresh, P. M., 2017. Finite Element and Experimental Modal Analysis of Car Roof with and without Damper, Materials Today: Proceedings, 4(10), 11237–11244.
  • 12. Ozcanli, M., Dede, G., 2018. Evaluation of Advanced Steel Usage on Seat Construction to Reduce Bus Weight in Compliance with FMVSS and APTA Regulations, International Journal of Heavy Vehicle Systems, 25, 235-247.
  • 13. Araújo, D.C., e Castro, L.C., Shzu M.A.M., Avila, S.M., de Morais, M.V.G., 2017. Modal İdentification of a Wind Turbine, Procedia Engineering, 199, 2250–2255.
  • 14. Wei, L., Cheng, H., Li, J., 2012. Modal Analysis of a Cable-Stayed Bridge, Procedia Engineering, 31, 481–486.
  • 15. Wang, R., Han, T., Wang, W., Xue Y., Fu D., 2018. Fracture Analysis and İmprovement of the Main Shaft of Wind Turbine Based on Finite Element Method. Advances in Mechanical Engineering, 10(4), 1-9.
  • 16. Weis, P., Kucera, L., Pechac, P., Mocilan, M., 2017. Modal Analysis of Gearbox Housing with Applied Load, Procedia Engineering, 192, 953–958.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Erinç Uludamar Bu kişi benim

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 1

Kaynak Göster

APA Uludamar, E. (2019). Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(1), 33-42. https://doi.org/10.21605/cukurovaummfd.601225
AMA Uludamar E. Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles. cukurovaummfd. Mart 2019;34(1):33-42. doi:10.21605/cukurovaummfd.601225
Chicago Uludamar, Erinç. “Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34, sy. 1 (Mart 2019): 33-42. https://doi.org/10.21605/cukurovaummfd.601225.
EndNote Uludamar E (01 Mart 2019) Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34 1 33–42.
IEEE E. Uludamar, “Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles”, cukurovaummfd, c. 34, sy. 1, ss. 33–42, 2019, doi: 10.21605/cukurovaummfd.601225.
ISNAD Uludamar, Erinç. “Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 34/1 (Mart 2019), 33-42. https://doi.org/10.21605/cukurovaummfd.601225.
JAMA Uludamar E. Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles. cukurovaummfd. 2019;34:33–42.
MLA Uludamar, Erinç. “Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 34, sy. 1, 2019, ss. 33-42, doi:10.21605/cukurovaummfd.601225.
Vancouver Uludamar E. Design and Finite Element Analysis of a Foldable and Single-Arm Wheelchair Lift for M-Class Vehicles. cukurovaummfd. 2019;34(1):33-42.