Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods

Yıl 2020, Cilt: 35 Sayı: 3, 711 - 720, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846694

Öz

The cyclones, one of the dust collection devices, are used to separate the particles or liquid from the carrier gas by centrifugal forces. They have been widely applied in gas-solid separation for an industrial air cleaning process. In addition to being economical, their simplicity of constructions, lack of moving parts, and adaptation to high pressure and temperature conditions make these devices durable and efficient. On the other hand, in the operation of cyclones, the effects of particle, carrier gas, cyclone dimensions, and other factors are very important operational requirements in determining the cyclone performance. In the cyclone design, the terms of pressure drop, and cut-off diameter determine the cyclone performance. In addition, cyclone geometry plays an important role on changes in pressure drop and cut-off diameter values. In this study, high efficiency standard cyclone geometric structure is studied, and this structure is modelled using Solidworks program. Computational Fluid Dynamics (CFD) was used to determine of cyclone separation performance. In the scope of the study, flow analysis is performed, and cut-off diameters are tried to be determined by using statistical learning methods from the results of the analysis.

Kaynakça

  • 1. Elsayed, K., Lacor, C., 2016. Analysis and Optimization of Cyclone Separators Geometry Using RANS and LES Methodologies, 125. doi:10.1007/978-3-662-43489-5-8.
  • 2. Zhu, Y., Lee, K.W., 1999. Experimental Study on Small Cyclones Operating at High Flowrates, Journal of Aerosol Science, 30(10), 1303–1315. doi:10.1016/S00218502(99)000 24-5.
  • 3. Siadaty, M., Kheradmand, S., Ghadiri, F., 2017. Improvement of the Cyclone Separation Efficiency with a Magnetic Field, Journal of Aerosol Science 114 (May 2017) 219–232. doi:10.1016/j.jaerosci.2017.09.015.
  • 4. Zhou, F., Sun, G., Han, X., Zhang, Y., Bi, W., 2018. Experimental and CFD Study on Effects of Spiral Guide Vanes on Cyclone Performance, Advanced Powder Technology 29(12), 3394–3403. doi:10.1016/j.apt.2018.09. 022.
  • 5. Zhao, B., 2009. Modeling Pressure Drop Coefficient for Cyclone Separators: A Support Vector Machine Approach, Chemical Engineering Science 64(19), 4131–4136. doi:10.1016/j.ces.2009.06.017.
  • 6. Demir, S., 2014. A Practical Model for Estimating Pressure Drop in Cy-clone Separators: An Experimental Study, Powder Technology. doi:10.1016/j.powtec.2014.08.024.
  • 7. Misiulia, D., Andersson, A.G., Lundström, T. S., 2017. Effects of the Inlet Angle on the Collection Efficiency of a Cyclone with Helical-roof Inlet, Powder Technology, 305, 48–55. doi:10.1016/j.powtec.2016.09.050.
  • 8. Dirgo, J., Leith, D., 1985. Cyclone Collection Efficiency: Comparison of Experimental Results with Theoretical Predictions, Aerosol Science and Technology 4(4), 401–415. doi:10.1080/02786828508959066.
  • 9. Parvaz, F., Hosseini, S.H., Elsayed, K., Ahmadi, G., 2019. Influence of the Dipleg Shape on the Performance of Gas Cyclones, Separation and Purification Technology 233 (May 2019) 116000. doi:10.1016/j.seppur. 2019.116000.
  • 10. He, M., Zhang, Y., Ma, L., Wang, H., Fu, P., Zhao, Z., 2018. Study on Flow Field Characteristics in a Reverse Rotation Cyclone with PIV, Chemical Engineering and Processing: Process Intensification 126 (February) 100–107. doi:10.1016/j.cep.2018. 02.026.
  • 11. Azadi, M., Mohebbi, A., 2010. A CFD Study of the Effect of Cyclone Size on its Performance Parameters, Journal of Hazardous Materials 182(1-3), 835–841. doi:10.1016/j. jhazmat.2010.06.115.
  • 12. Qian, F.P., Zhang, M.Y., 2007. Effects of the Inlet Section Angle on the Flow Field of a Cyclone, Chemical Engineering and Technology, 30(11), 1564–1570. doi:10.1002/ ceat.200700246.
  • 13. Cui, J., Chen, X., Gong, X., Yu, G., 2010. Numerical Study of Gas-solid Flow in a Radial-inlet Structure Cyclone Separator, Industrial and Engineering Chemistry Research 49(11), 5450–5460. doi:10.1021/ie901962r.
  • 14. Gimbun, J., Chuah, T.G., Fakhru’l-Razi, A., Choong, T.S., 2005. The Influence of Temperature and Inlet Velocity on Cyclone Pressure Drop: A CFD Study, Chemical Engineering and Processing: Process Intensification 44 (1), 7–12. doi:10.1016/j.cep. 2004.03.005.
  • 15. Zhao, B., Shen, H., Kang, Y., 2004. Development of a Symmetrical Spiral Inlet to Improve Cyclone Separator Performance, Powder Technology 145(1), 47–50. doi:10. 1016/j.powtec.2004.06.001.
  • 16. Elsayed, K., Lacor, C., 2012. Modeling and c Using RBF Type Artificial Neural Networks and Genetic Algorithms, Powder Technology, 217, 84–99. doi:10.1016/j.powtec.2011.10.015.
  • 17. Griffiths, W.D., Boysan, F., 1995. Computational Fluid Dynamics (CFD) and Emprical Modelling the Performance of a Number of Cyclone Samplers, Journal Aerosal Science, 27(2), 281-304. doi.org/10.1016/0021- 8502(95)00549-8.
  • 18. Karadeniz, A., 2015. Stairmand Tipi Yüksek Verimli Siklon Geometrisindeki Modifikasyonların Partikül Tutma Verimi ve Basınç Kaybına Etkisi (In Turkish), MSc Thesis, Institute of Natural Sciences, Yıldız Technical University, Istanbul.

Yüksek Verimli Standart Siklon Performansının Nümerik Yöntemler Kullanılarak Belirlenmesi

Yıl 2020, Cilt: 35 Sayı: 3, 711 - 720, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846694

Öz

Siklonlar, santrifüj kuvvetler etkisiyle, katı ya da sıvı partikülleri gaz taşıyıcıdan ayırmaya yarayan toz toplama cihazlarıdır. Endüstriyel alanlarda hava toz temizleme proseslerinde çok yaygın olarak kullanılmaktadırlar. Ekonomik olmalarının yanı sıra çok fazla hareketli parça içermemeleri, yüksek basınç ve sıcaklık uygulamalarına uyum sağlayabilmeleri bu cihazları dayanıklı ve verimli kılmaktadır. Öte yandan siklonların çalışmasında, partikülün, taşıyıcı gazın, siklon boyutlarının ve diğer faktörlerin etkileri siklon performansı belirlemede oldukça önemlidir. Siklon dizaynında, basınç düşmesi ve kesme çapı değerleri siklon performansını belirleyen parametrelerdir. Bu anlamda siklon geometrisi basınç düşümü ve kesim çapı değerlerindeki değişiklikler üzerinde önemli bir rol oynamaktadır. Yapılan bu çalışmada yüksek verimli standart siklon geometrik yapısı üzerinde çalışılmıştır ve bu yapı Solidworks programı ile modellenmiştir. Bilgisayar destekli Akış Analizi (CFD), siklon performansını belirmek için kullanıldı. Çalışma kapsamında akış analizleri yapılmış, analiz sonuçlarından istatistiksel öğrenme yöntemleri kullanılarak kesme çapları belirlenmeye çalışılmıştır.

Kaynakça

  • 1. Elsayed, K., Lacor, C., 2016. Analysis and Optimization of Cyclone Separators Geometry Using RANS and LES Methodologies, 125. doi:10.1007/978-3-662-43489-5-8.
  • 2. Zhu, Y., Lee, K.W., 1999. Experimental Study on Small Cyclones Operating at High Flowrates, Journal of Aerosol Science, 30(10), 1303–1315. doi:10.1016/S00218502(99)000 24-5.
  • 3. Siadaty, M., Kheradmand, S., Ghadiri, F., 2017. Improvement of the Cyclone Separation Efficiency with a Magnetic Field, Journal of Aerosol Science 114 (May 2017) 219–232. doi:10.1016/j.jaerosci.2017.09.015.
  • 4. Zhou, F., Sun, G., Han, X., Zhang, Y., Bi, W., 2018. Experimental and CFD Study on Effects of Spiral Guide Vanes on Cyclone Performance, Advanced Powder Technology 29(12), 3394–3403. doi:10.1016/j.apt.2018.09. 022.
  • 5. Zhao, B., 2009. Modeling Pressure Drop Coefficient for Cyclone Separators: A Support Vector Machine Approach, Chemical Engineering Science 64(19), 4131–4136. doi:10.1016/j.ces.2009.06.017.
  • 6. Demir, S., 2014. A Practical Model for Estimating Pressure Drop in Cy-clone Separators: An Experimental Study, Powder Technology. doi:10.1016/j.powtec.2014.08.024.
  • 7. Misiulia, D., Andersson, A.G., Lundström, T. S., 2017. Effects of the Inlet Angle on the Collection Efficiency of a Cyclone with Helical-roof Inlet, Powder Technology, 305, 48–55. doi:10.1016/j.powtec.2016.09.050.
  • 8. Dirgo, J., Leith, D., 1985. Cyclone Collection Efficiency: Comparison of Experimental Results with Theoretical Predictions, Aerosol Science and Technology 4(4), 401–415. doi:10.1080/02786828508959066.
  • 9. Parvaz, F., Hosseini, S.H., Elsayed, K., Ahmadi, G., 2019. Influence of the Dipleg Shape on the Performance of Gas Cyclones, Separation and Purification Technology 233 (May 2019) 116000. doi:10.1016/j.seppur. 2019.116000.
  • 10. He, M., Zhang, Y., Ma, L., Wang, H., Fu, P., Zhao, Z., 2018. Study on Flow Field Characteristics in a Reverse Rotation Cyclone with PIV, Chemical Engineering and Processing: Process Intensification 126 (February) 100–107. doi:10.1016/j.cep.2018. 02.026.
  • 11. Azadi, M., Mohebbi, A., 2010. A CFD Study of the Effect of Cyclone Size on its Performance Parameters, Journal of Hazardous Materials 182(1-3), 835–841. doi:10.1016/j. jhazmat.2010.06.115.
  • 12. Qian, F.P., Zhang, M.Y., 2007. Effects of the Inlet Section Angle on the Flow Field of a Cyclone, Chemical Engineering and Technology, 30(11), 1564–1570. doi:10.1002/ ceat.200700246.
  • 13. Cui, J., Chen, X., Gong, X., Yu, G., 2010. Numerical Study of Gas-solid Flow in a Radial-inlet Structure Cyclone Separator, Industrial and Engineering Chemistry Research 49(11), 5450–5460. doi:10.1021/ie901962r.
  • 14. Gimbun, J., Chuah, T.G., Fakhru’l-Razi, A., Choong, T.S., 2005. The Influence of Temperature and Inlet Velocity on Cyclone Pressure Drop: A CFD Study, Chemical Engineering and Processing: Process Intensification 44 (1), 7–12. doi:10.1016/j.cep. 2004.03.005.
  • 15. Zhao, B., Shen, H., Kang, Y., 2004. Development of a Symmetrical Spiral Inlet to Improve Cyclone Separator Performance, Powder Technology 145(1), 47–50. doi:10. 1016/j.powtec.2004.06.001.
  • 16. Elsayed, K., Lacor, C., 2012. Modeling and c Using RBF Type Artificial Neural Networks and Genetic Algorithms, Powder Technology, 217, 84–99. doi:10.1016/j.powtec.2011.10.015.
  • 17. Griffiths, W.D., Boysan, F., 1995. Computational Fluid Dynamics (CFD) and Emprical Modelling the Performance of a Number of Cyclone Samplers, Journal Aerosal Science, 27(2), 281-304. doi.org/10.1016/0021- 8502(95)00549-8.
  • 18. Karadeniz, A., 2015. Stairmand Tipi Yüksek Verimli Siklon Geometrisindeki Modifikasyonların Partikül Tutma Verimi ve Basınç Kaybına Etkisi (In Turkish), MSc Thesis, Institute of Natural Sciences, Yıldız Technical University, Istanbul.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Nihan Uygur Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 3

Kaynak Göster

APA Uygur, N. (2020). Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(3), 711-720. https://doi.org/10.21605/cukurovaummfd.846694
AMA Uygur N. Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods. cukurovaummfd. Eylül 2020;35(3):711-720. doi:10.21605/cukurovaummfd.846694
Chicago Uygur, Nihan. “Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, sy. 3 (Eylül 2020): 711-20. https://doi.org/10.21605/cukurovaummfd.846694.
EndNote Uygur N (01 Eylül 2020) Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 3 711–720.
IEEE N. Uygur, “Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods”, cukurovaummfd, c. 35, sy. 3, ss. 711–720, 2020, doi: 10.21605/cukurovaummfd.846694.
ISNAD Uygur, Nihan. “Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/3 (Eylül 2020), 711-720. https://doi.org/10.21605/cukurovaummfd.846694.
JAMA Uygur N. Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods. cukurovaummfd. 2020;35:711–720.
MLA Uygur, Nihan. “Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 35, sy. 3, 2020, ss. 711-20, doi:10.21605/cukurovaummfd.846694.
Vancouver Uygur N. Determination of High Efficiency Standard Cyclone Performance Using Numerical Methods. cukurovaummfd. 2020;35(3):711-20.