Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Glass Waste Sludge on the Freezing-Thawing Behavior of Clayey Soils

Yıl 2020, Cilt: 35 Sayı: 3, 783 - 796, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846739

Öz

In recent years, since waste materials constitute a serious degree of hazard to the eco-system, several sectors have started to question the usability of these materials in different fields. In this regard, researchers have pointed out by means of the performed studies that wastes can also be utilized in soil improvement applications. Glass waste sludge (GWS) is a waste generated during the processing of the raw material used for glass production. This waste accumulates in serious amounts in nature. Studies on the use of this waste are very limited in the literature. In this study, the effect of glass waste sludge (GWS) and cement (CMT) on the strength and consolidation parameters of a clay soil was investigated under freeze-thaw behavior. Under the effect of freezing-thawing, with the addition of GWS, the clay soil became more stable, strength parameters increased and consolidation behavior improved. In addition, these improvements have been found to be further enhanced by the addition of cement.

Kaynakça

  • 1. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., Zadhoush, A., 2012. A Simple Review of Soil Reinforcment by Using Natural and Synthetic Fibers, Construction and Building Materials, 30, 100-116.
  • 2. Urhan, S., 1991. Silisin Alkali Ortamda Çözünmesine Etki Eden Faktörler. Türkiye Çimento Müstahsilleri Birliği Çimento Bülteni, 28(286), 15-21.
  • 3. Ustabaş, İ, Kaya, A., 2018. Comparing the Pozzolanic Activity Properties of Obsidian to Those of Fly Ash and Blast Furnace Slag. Construction and Building Materials, 164, 297-307.
  • 4. Yarbaşı, N., Kalkan, E., Akbulut, S., 2007. Modification of the Geotechnical Properties, as Influenced by Freeze-Thaw, of Granular Soils with Waste Additives, Cold Regions Science and Technology, 48, 44-54.
  • 5. Yarbaşı, N., Alacalı, M., 2018. Atık Lastik Parçalarıyla Güçlendirilmiş İri Taneli Zeminlerin Donma-çözülme Sonucu Mukavemetlerindeki Değişimin İncelenmesi. Pamukkale Univ. Müh Bil. Dergisi, 24(3), 561-565.
  • 6. Lin, D.F., Lin, K.L., Luo, H.L., 2007. A Comparison Between Sludge Ash and Fly Ash on the Improvement in Soft Soil. J. Air Waste Manage, 57(1), 59-64.
  • 7. Ayodele, A.L., Adebisi, A.O., Kareem, M.A., 2016. Use of Sludge Ash in Stabilising Two Tropical Laterite. Int. J. Sci. Eng. Res., 7.
  • 8. Zhan, T.L., Zhan, X., Lin, W., Luo, X., Chen, Y., 2014. Field and Laboratory Investigation on Geotechnical Properties of Sewage Sludge Disposed in a Pit at Changan Landfill, Chengdu, China. Engineering geology, 170, 24-32.
  • 9. Güllü, H., 2014. Factorial Experimental Approach for Effective Dosage Rate of Stabilizer: Application for Fine-grained Soil Treated with Bottom Ash. Soils and Foundations, 54(3), 462-477.
  • 10. Ayininuola, G., Ayodeji, I., 2016. Influence of Sludge Ash on Soil Shear Strength. Journal of Civil Engineering Research, 6(3), 72-77.
  • 11. Fauzi, A., Zuraidah, D., Usama, J.F., 2016. Soil Engineering Properties Improvement by Utilization of Cut Waste Plastic and Crushed Waste Glass as Additive. International Journal of Engineering and Technology, 8(1), 15. https://doi.org/10.7763/IJET.2016.V8.851.
  • 12. Hasan, H., Dang, L, Khabbaz, H., Fatahi, B., Terzaghi, S., 2016. Remediation of Expansive Soils Using Agricultural Waste Bagasse Ash. Procedia Eng., 143, 1368-1375.
  • 13. Brooks, R.M., 2019. Soil Stabilization with Fly Ash and Corn Waste Ash–improvements in Engineering Characteristics. Int. J. Appl. Eng. Res., 14(4), 1025-1030.
  • 14. Ramakrishna, A.N, Pradeepkumar, A.V., 2006. Stabilization of Black Cotton Soil Using Rice Husk Ash and Cement. In National Conference on Civil Engineering Meeting the Challenges of Tomorrow, GND Engineering College, Ludhiana, 215-220.
  • 15. Sharma, R.S., Phanikumar, B.R., Rao, B.V., 2008. Engineering Behavior of a Remolded Expansive Clay Blended with Lime, Calcium Chloride and Rice-husk Ash. Jnl. of Mat. in Civil Eng, 20(8), 509-515.
  • 16. Browna, F.H., Nash, B.P., Fernandez, D.P., Merrick, H.V., Thomas, R.J., 2013. Geochemical Composition of Source Obsidians from Kenya. Journal of Archaeological Science, 40, 3233-3251.
  • 17. Campbell, S., Healey, E., 2016. Multiple Sources: The pXRF Analysis of Obsidian from Kenan Tepe, S.E. Turkey. Journal of Archaeological Science: Reports, 10, 377-389.
  • 18. Carter, T., Poupeau, G., Bressy, C., Pearce, N.J.G., 2006. A New Programme of Obsidian Characterization at Çatalhöyük, Turkey. Journal of Archaeological Science, 33(7), 893-909.
  • 19. Çolak, A., Aygün, H., 2011. Sarıkamış (Kars) Civarı Obsidyenleri Bilgi Notu. MTA Maden Etüt ve Arama Dairesi Başkanlığı, SERKA Raporu. Kars, Türkiye, 2011.
  • 20. Ercan, T., Yegingil, Z., Bigazzi, G., 2016. Obsidian Definition and Characteristics, Distribution and Geochemical Characteristics of Those of the Central Anatolian Obsidian in Anatolia. Journal Geomorphol, 17(1989), 71-83.
  • 21. Marjanovic, N., Komljenovic, M., Bašcˇarevic, Z., Nikolic, V., Petrovic, R., 2015. Physical– mechanical and Microstructural Properties of Alkali-activated fly Ash-blast Furnace Slag Blends. Ceramics International. 41, 1421-1435.
  • 22. Bell, F.G., 1996. Lime Stabilization of Clay Minerals and Soils. Engineering Geology, 42(4), 223-37. https://doi.org/10.1016/j.con buildmat.2018.03.049.
  • 23. Mohd Yunus, N.Z., Wanatowski, D., Abdul Hassan, N., Marto, A., 2016. Shear Strength and Compressibility Behavior of Lime Treated Organic Clay. KSCE Journal of Civil Engineering, KSCE, 20(5), 1721-1727. https://doi.org/10.1007/s12205-018-1294-x.
  • 24. Arulrajah, A., Mohammadjavad, Y., Mahdi, M. D, Suksun, H., Myint, W.B., Melvyn, L., 2018. Evaluation of Fly Ash and Slag-based Geopolymers for the Improvement of a Soft Marine Clay by Deep Soil Mixing. Soils and Foundations, 58(6), 1358-70. https://doi.org/ 10.1016/j.sandf.2018.07.005.
  • 25. Biradar, K.B., Arun, K.U., Satyanarayana, P.V.V., 2014. Influence of Steel Slag and Fly Ash on Strength Properties of Clayey Soil: A Comparative Study. International Journal of Engineering Trends and Technology (IJETT)- (14) (2). https://doi.org/10.14445/22315381/ IJETT-V14P213.
  • 26. Çokca, E., Yazici, V., Ozaydin, K., 2009. Stabilization of Expansive Clays Using Granulated Blast Furnace Slag (GBFS) and GBFS-cement. Geotech. Geol. Eng., 27(4), 489.
  • 27. Kumar, A., Sivapullaiah, P.V., 2012. Improvement of Strength of Expansive Soil with Waste Granulated Blast Furnace Slag. In Geo Congress 2012: State of the Art and Practice in Geotechnical Engineering, 3920(8). https://doi.org/10.14445/22315381/IJETT- V11P254.
  • 28. Kumar, A., Gupta, D., 2016. Behavior of Cement-stabilized Fiber-reinforced Pond Ash, Rice Husk Ash–soil Mixtures. Geotextiles and Geomembranes, 44(3), 466-74. https://doi.org/ 10.1016/j.jrmge.2016.05.010.
  • 29. Chang, I., Jooyoung, I., Moon-Kyung, C., Gye- Chun, C., 2018. Bovine Casein as a New Soil Strengthening Binder from Diary Wastes. Construction and Building Materials, 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11. 009.
  • 30. Jin, L.M., MohdYunus, N.Z, Hezmi, M.A., Rashid, A.S.A., Marto, A., Kalatehjari, R., Pakir, F., Mashros, N., Ganiyu, A., 2018. Predicting the Effective Depth of Soil Stabilization for Marine Clay Treated by Biomass Silica. KSCE Journal of Civil Engineering, KSCE, 22(11), 4316-4326. https://doi.org/10.1007/s12205-018-1294-x.
  • 31. Gupta, C., Sharma, R.K., 2014. Influence of Marble Dust, Fly Ash and Beach Sand on Sub- grade Characteristics of Expansive Soils. International Conference on Advances in Engineering and Technology, 13-18.
  • 32. James, J., Pandian, P.K., 2016. Industrial Wastes as Auxiliary Additives to Cement/lime Stabilization of Soils. Adv. Civ. Eng., 1-17.
  • 33. Esmaeilpour, S.N., Abbasali T.G., Mohammadreza, K.T., Asskar, J.C., 2019. Improvement of the Engineering Behavior of Sand-clay Mixtures Using Kenaf Fiber Reinforcement. Transportation Geotechnics, 19, 1-8. https://doi.org/10.1016/j.trgeo.2019.01.004.
  • 34. Keerthi, Y., Divya Kanthi, P., Tejaswi, N., Shyam Chamberlin, K., Satyanarayana, B., 2013. Stabilization of Clayey Soil Using Cement Kiln Waste. Int. J. Adv. Struct. Geotech. Eng., 2(2), 77-81.
  • 35. Abbaspour, M., Aflaki, E., Nejad, F.M., 2019. Reuse of Waste Tire Textile Fibers as Soil Reinforcement. Journal of cleaner production, 207, 1059-1071.
  • 36. Liu, Y., Chang, C.W., Namdar, A., She, Y., Lin, C.H., Yuan, X., Yang, Q., 2019. Stabilization of Expansive Soil Using Cementing Material from Rice Husk Ash and Calcium Carbide Residue. Construction and Building Materials, 221, 1-11.
  • 37. Shah, S.A.R., Mahmood, Z., Nisar, A., Aamir, M., Farid, A., Waseem, M., 2020. Compaction Performance Analysis of Alum Sludge Waste Modified Soil. Construction and Building Materials, 230, 116953.
  • 38. Taki, K., Choudhary, S., Gupta, S., Kumar, M., 2020. Enhancement of Geotechnical Properties of Municipal Sewage Sludge for Sustainable Utilization as Engineering Construction Material. Journal of Cleaner Production, 251, 119-723.
  • 39. Chauhan, M.S., Mittal, S., Mohanty, B., 2008. Performance Evaluation of Silty Sand Subgrade Reinforced with Fly Ash and Fibre, Journal of Geotextiles and Geomembranes, 26(5), 429–435.
  • 40. Akbulut, S., Arasan, S., Kalkan, E., 2007. Modification of Clayey Soils Using Scrap Tire Rubber and Synthetic Fibers, Applied Clay Science, 38, 23–32.
  • 41. Demir, İ., Başpınar, M.S., Görhan, G., Kahraman, E., 2008. Mermer Tozu ve Atıklarının Kullanım Alanlarının Araştırılması, 6. Mermer ve Doğal taş Sempozyumu, 26-27 Haziran, Afyonkarahisar.
  • 42. Ghazavi, M., Roustaie, M., 2010. The Influence of Freeze-thaw Cycles on the Unconfined Compressive Strength of Fiber- reinforced Clay, Cold Regions Science and Technology, 61, 125-131.
  • 43. Güllü, H., Hazirbaba, K., 2010. California Bearing Ratio Improvement and Freeze-thaw Performance of Fine-grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 63, 50-60.
  • 44. Jafari, M., Esna-Ashari, M., 2012. Effect of Waste Tire Cord Reinforcement on Unconfined Compressive Strength of Lime Stabilized Clayey Soil Under Freeze–Thaw Condition, Cold Regions Science and Technology, 82, 21–29.
  • 45. Yarbaşı, N., 2016. Atık Lastik Parçalarıyla Güçlendirilmiş Killi Zeminlerin Donma- Çözülme Davranışı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 559-562.
  • 46. Kalkan, E., 2009. Effects of Silica Fume on The Geotechnical Properties of Fine-Grained Soils Exposed to Freeze and Thaw, Cold Regions Science and Technology, 58(3), 130-135.
  • 47. Kalkan, E., 2013. Preparation of Scrap Tires Rubber Fiber-Silica Fume Mixtures for Modification of Clayey Soils, Applied Clay Science, 80-81, 117-125.
  • 48. Zaimoğlu, A.Ş., 2010. Freezing-thawing Behavior of Fine-grained Soils Reinforced with Polypropylene Fibers, Cold Regions Science and Technology, 60, 63-65.
  • 49. Zorluer, I., Demirbas, A., 2013. Use of Marble Dust and Fly Ash in Stabilization of Base Material, Science and Engineering of Composite Materials, 20(1), 47-55.
  • 50. Zaimoğlu, A.Ş., Hattatoğlu, F., Akbulut, R.K., 2013. Yüke Maruz İnce Taneli Zeminlerin Donma-çözülme Davranışı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 117-121.
  • 51. Zaimoğlu, A.Ş., Akbulut, R.K., Arasan, S., 2015. Effect of Freze-thaw Cycles on Strength Behavior of Compacted Chicken Quill Clay Composite in Undrained Loading. Journal of Natural Fibers, 13(3), 299-308.
  • 52. Zaimoğlu, A.Ş., Calik, Y., Akbulut, R.K., Yetimoglu, T., 2016. A Study on Freeze-thaw Behavior of Randomly Distributed Fiber- reinforced Soil. Periodica Polytechnica: Civil Engineering, 60(1), 3-9.
  • 53. Andersland, O.B., Ladanyi, B., 1994. An Introduction to Frozen Ground Engineering. Second Edition. The American Society of Civil Engineering, John Wiley & Sons Inc., New Jersey.
  • 54. Simonsen, E., Isacsson, U., 1999. Thaw Weakening of Pavement Structures in Cold Regions. Cold Regions Science and Technology, 29, 135-151.
  • 55. Wang, D., Ma, W., Niu, Y., Chang, X., Wen, Z., 2007. Effects of Cyclic Freezing and Thawing on Mechanical Properties of Qighai- Tibet Clay. Cold Region and Science Technology, 48, 34-43.
  • 56. Qi, J., Ma, W., Song, C., 2008. Influence of Freeze-thaw on Engineering Properties of a Silty Soil. Cold Region Science and Technology, 53, 397-404.
  • 57. Tester, R.E., Gaskin, P.N., 1996. Effect of Fines Content on Frost Heave. Canadian Geotechnical Journal, 33, 678-680.
  • 58. Hermansson, A., 2002. Laboratory and Field Testing on Rate of Frost Heave Versus Heat Extraction. Cold Region and Science Technology, 38, 137-151.
  • 59. Konrad, J.M., Lemieux, N., 2005. Influence of Fines on Frost Heave Characteristics of a Well- graded Base-course Material. Canadian Geotechnical Journal, 42, 515-527.
  • 60. Hui, B., Ping, H., 2009. Frost Heave and Dry Density Changes During Cyclic Freeze-thaw of Silty Clay. Permafrost and Periglacial Processes, 20, 65-70.
  • 61. Rempel, A., 2010. Frost Heave. Journal of Glaciology, 56(200), 1122-1128.
  • 62. TS 1500, 2000: İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması, Türk Standartları Enstitüsü. Ankara.
  • 63. Hazirbaba, K., Zhang, Y., Hulsey J.L., 2011. Evaluation of Temperature and Freeze-thaw Effects on Excess Pore Pressure Generation of Fine-grained Soils. Soil Dynamics and Earthquake Engineering, 31, 372-384.
  • 64. Liu, J., Wang, T., Tian, Y., 2010. Experimental Study of the Dynamic Properties of Cement- and lime- Modified Clay Soils Subjected to Freeze-thaw Cycles. Cold Regions Science and Technology, 61, 29-33.
  • 65. TS 1900-2, 2006: İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standartları Enstitüsü, Ankara.

Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi

Yıl 2020, Cilt: 35 Sayı: 3, 783 - 796, 30.09.2020
https://doi.org/10.21605/cukurovaummfd.846739

Öz

Son yıllarda, atık malzemelerin ekosistem için ciddi bir tehlike oluşturması sebebiyle, birçok sektör, bu malzemelerin farklı alanlarda kullanılabilirliğini sorgulamaya başlamıştır. Bu bağlamda, araştırmacılar, atıkların zemin iyileştirme uygulamalarında da değerlendirilebileceğini, yapmış oldukları çalışmalarla vurgulamışlardır. Cam atık çamuru (CAÇ) ise, cam üretimi için kullanılan hammaddenin işlenmesi sırasında ortaya çıkan bir atıktır. Bu atık, doğada ciddi miktarlarda birikmektedir. Literatürde, bu atığın kullanılmasına yönelik çalışmalar çok kısıtlıdır. Bu çalışmada ise, cam atık çamuru (CAÇ) ve çimentonun (ÇMT), kil bir zeminin dayanım ve konsolidasyon parametrelerine etkisi, donma-çözülme davranışı altında araştırılmıştır. Donma-çözülme etkisi altında, CAÇ ilavesiyle, kil zeminin daha kararlı bir hale geldiği, zeminin dayanım parametrelerinin arttığı ve konsolidasyon davranışlarında ise iyileşmelerin olduğu gözlenmiştir. Buna ilaveten, çimento eklenmesi ile de, bu iyileşmelerin daha da arttığı görülmüştür.

Kaynakça

  • 1. Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., Zadhoush, A., 2012. A Simple Review of Soil Reinforcment by Using Natural and Synthetic Fibers, Construction and Building Materials, 30, 100-116.
  • 2. Urhan, S., 1991. Silisin Alkali Ortamda Çözünmesine Etki Eden Faktörler. Türkiye Çimento Müstahsilleri Birliği Çimento Bülteni, 28(286), 15-21.
  • 3. Ustabaş, İ, Kaya, A., 2018. Comparing the Pozzolanic Activity Properties of Obsidian to Those of Fly Ash and Blast Furnace Slag. Construction and Building Materials, 164, 297-307.
  • 4. Yarbaşı, N., Kalkan, E., Akbulut, S., 2007. Modification of the Geotechnical Properties, as Influenced by Freeze-Thaw, of Granular Soils with Waste Additives, Cold Regions Science and Technology, 48, 44-54.
  • 5. Yarbaşı, N., Alacalı, M., 2018. Atık Lastik Parçalarıyla Güçlendirilmiş İri Taneli Zeminlerin Donma-çözülme Sonucu Mukavemetlerindeki Değişimin İncelenmesi. Pamukkale Univ. Müh Bil. Dergisi, 24(3), 561-565.
  • 6. Lin, D.F., Lin, K.L., Luo, H.L., 2007. A Comparison Between Sludge Ash and Fly Ash on the Improvement in Soft Soil. J. Air Waste Manage, 57(1), 59-64.
  • 7. Ayodele, A.L., Adebisi, A.O., Kareem, M.A., 2016. Use of Sludge Ash in Stabilising Two Tropical Laterite. Int. J. Sci. Eng. Res., 7.
  • 8. Zhan, T.L., Zhan, X., Lin, W., Luo, X., Chen, Y., 2014. Field and Laboratory Investigation on Geotechnical Properties of Sewage Sludge Disposed in a Pit at Changan Landfill, Chengdu, China. Engineering geology, 170, 24-32.
  • 9. Güllü, H., 2014. Factorial Experimental Approach for Effective Dosage Rate of Stabilizer: Application for Fine-grained Soil Treated with Bottom Ash. Soils and Foundations, 54(3), 462-477.
  • 10. Ayininuola, G., Ayodeji, I., 2016. Influence of Sludge Ash on Soil Shear Strength. Journal of Civil Engineering Research, 6(3), 72-77.
  • 11. Fauzi, A., Zuraidah, D., Usama, J.F., 2016. Soil Engineering Properties Improvement by Utilization of Cut Waste Plastic and Crushed Waste Glass as Additive. International Journal of Engineering and Technology, 8(1), 15. https://doi.org/10.7763/IJET.2016.V8.851.
  • 12. Hasan, H., Dang, L, Khabbaz, H., Fatahi, B., Terzaghi, S., 2016. Remediation of Expansive Soils Using Agricultural Waste Bagasse Ash. Procedia Eng., 143, 1368-1375.
  • 13. Brooks, R.M., 2019. Soil Stabilization with Fly Ash and Corn Waste Ash–improvements in Engineering Characteristics. Int. J. Appl. Eng. Res., 14(4), 1025-1030.
  • 14. Ramakrishna, A.N, Pradeepkumar, A.V., 2006. Stabilization of Black Cotton Soil Using Rice Husk Ash and Cement. In National Conference on Civil Engineering Meeting the Challenges of Tomorrow, GND Engineering College, Ludhiana, 215-220.
  • 15. Sharma, R.S., Phanikumar, B.R., Rao, B.V., 2008. Engineering Behavior of a Remolded Expansive Clay Blended with Lime, Calcium Chloride and Rice-husk Ash. Jnl. of Mat. in Civil Eng, 20(8), 509-515.
  • 16. Browna, F.H., Nash, B.P., Fernandez, D.P., Merrick, H.V., Thomas, R.J., 2013. Geochemical Composition of Source Obsidians from Kenya. Journal of Archaeological Science, 40, 3233-3251.
  • 17. Campbell, S., Healey, E., 2016. Multiple Sources: The pXRF Analysis of Obsidian from Kenan Tepe, S.E. Turkey. Journal of Archaeological Science: Reports, 10, 377-389.
  • 18. Carter, T., Poupeau, G., Bressy, C., Pearce, N.J.G., 2006. A New Programme of Obsidian Characterization at Çatalhöyük, Turkey. Journal of Archaeological Science, 33(7), 893-909.
  • 19. Çolak, A., Aygün, H., 2011. Sarıkamış (Kars) Civarı Obsidyenleri Bilgi Notu. MTA Maden Etüt ve Arama Dairesi Başkanlığı, SERKA Raporu. Kars, Türkiye, 2011.
  • 20. Ercan, T., Yegingil, Z., Bigazzi, G., 2016. Obsidian Definition and Characteristics, Distribution and Geochemical Characteristics of Those of the Central Anatolian Obsidian in Anatolia. Journal Geomorphol, 17(1989), 71-83.
  • 21. Marjanovic, N., Komljenovic, M., Bašcˇarevic, Z., Nikolic, V., Petrovic, R., 2015. Physical– mechanical and Microstructural Properties of Alkali-activated fly Ash-blast Furnace Slag Blends. Ceramics International. 41, 1421-1435.
  • 22. Bell, F.G., 1996. Lime Stabilization of Clay Minerals and Soils. Engineering Geology, 42(4), 223-37. https://doi.org/10.1016/j.con buildmat.2018.03.049.
  • 23. Mohd Yunus, N.Z., Wanatowski, D., Abdul Hassan, N., Marto, A., 2016. Shear Strength and Compressibility Behavior of Lime Treated Organic Clay. KSCE Journal of Civil Engineering, KSCE, 20(5), 1721-1727. https://doi.org/10.1007/s12205-018-1294-x.
  • 24. Arulrajah, A., Mohammadjavad, Y., Mahdi, M. D, Suksun, H., Myint, W.B., Melvyn, L., 2018. Evaluation of Fly Ash and Slag-based Geopolymers for the Improvement of a Soft Marine Clay by Deep Soil Mixing. Soils and Foundations, 58(6), 1358-70. https://doi.org/ 10.1016/j.sandf.2018.07.005.
  • 25. Biradar, K.B., Arun, K.U., Satyanarayana, P.V.V., 2014. Influence of Steel Slag and Fly Ash on Strength Properties of Clayey Soil: A Comparative Study. International Journal of Engineering Trends and Technology (IJETT)- (14) (2). https://doi.org/10.14445/22315381/ IJETT-V14P213.
  • 26. Çokca, E., Yazici, V., Ozaydin, K., 2009. Stabilization of Expansive Clays Using Granulated Blast Furnace Slag (GBFS) and GBFS-cement. Geotech. Geol. Eng., 27(4), 489.
  • 27. Kumar, A., Sivapullaiah, P.V., 2012. Improvement of Strength of Expansive Soil with Waste Granulated Blast Furnace Slag. In Geo Congress 2012: State of the Art and Practice in Geotechnical Engineering, 3920(8). https://doi.org/10.14445/22315381/IJETT- V11P254.
  • 28. Kumar, A., Gupta, D., 2016. Behavior of Cement-stabilized Fiber-reinforced Pond Ash, Rice Husk Ash–soil Mixtures. Geotextiles and Geomembranes, 44(3), 466-74. https://doi.org/ 10.1016/j.jrmge.2016.05.010.
  • 29. Chang, I., Jooyoung, I., Moon-Kyung, C., Gye- Chun, C., 2018. Bovine Casein as a New Soil Strengthening Binder from Diary Wastes. Construction and Building Materials, 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11. 009.
  • 30. Jin, L.M., MohdYunus, N.Z, Hezmi, M.A., Rashid, A.S.A., Marto, A., Kalatehjari, R., Pakir, F., Mashros, N., Ganiyu, A., 2018. Predicting the Effective Depth of Soil Stabilization for Marine Clay Treated by Biomass Silica. KSCE Journal of Civil Engineering, KSCE, 22(11), 4316-4326. https://doi.org/10.1007/s12205-018-1294-x.
  • 31. Gupta, C., Sharma, R.K., 2014. Influence of Marble Dust, Fly Ash and Beach Sand on Sub- grade Characteristics of Expansive Soils. International Conference on Advances in Engineering and Technology, 13-18.
  • 32. James, J., Pandian, P.K., 2016. Industrial Wastes as Auxiliary Additives to Cement/lime Stabilization of Soils. Adv. Civ. Eng., 1-17.
  • 33. Esmaeilpour, S.N., Abbasali T.G., Mohammadreza, K.T., Asskar, J.C., 2019. Improvement of the Engineering Behavior of Sand-clay Mixtures Using Kenaf Fiber Reinforcement. Transportation Geotechnics, 19, 1-8. https://doi.org/10.1016/j.trgeo.2019.01.004.
  • 34. Keerthi, Y., Divya Kanthi, P., Tejaswi, N., Shyam Chamberlin, K., Satyanarayana, B., 2013. Stabilization of Clayey Soil Using Cement Kiln Waste. Int. J. Adv. Struct. Geotech. Eng., 2(2), 77-81.
  • 35. Abbaspour, M., Aflaki, E., Nejad, F.M., 2019. Reuse of Waste Tire Textile Fibers as Soil Reinforcement. Journal of cleaner production, 207, 1059-1071.
  • 36. Liu, Y., Chang, C.W., Namdar, A., She, Y., Lin, C.H., Yuan, X., Yang, Q., 2019. Stabilization of Expansive Soil Using Cementing Material from Rice Husk Ash and Calcium Carbide Residue. Construction and Building Materials, 221, 1-11.
  • 37. Shah, S.A.R., Mahmood, Z., Nisar, A., Aamir, M., Farid, A., Waseem, M., 2020. Compaction Performance Analysis of Alum Sludge Waste Modified Soil. Construction and Building Materials, 230, 116953.
  • 38. Taki, K., Choudhary, S., Gupta, S., Kumar, M., 2020. Enhancement of Geotechnical Properties of Municipal Sewage Sludge for Sustainable Utilization as Engineering Construction Material. Journal of Cleaner Production, 251, 119-723.
  • 39. Chauhan, M.S., Mittal, S., Mohanty, B., 2008. Performance Evaluation of Silty Sand Subgrade Reinforced with Fly Ash and Fibre, Journal of Geotextiles and Geomembranes, 26(5), 429–435.
  • 40. Akbulut, S., Arasan, S., Kalkan, E., 2007. Modification of Clayey Soils Using Scrap Tire Rubber and Synthetic Fibers, Applied Clay Science, 38, 23–32.
  • 41. Demir, İ., Başpınar, M.S., Görhan, G., Kahraman, E., 2008. Mermer Tozu ve Atıklarının Kullanım Alanlarının Araştırılması, 6. Mermer ve Doğal taş Sempozyumu, 26-27 Haziran, Afyonkarahisar.
  • 42. Ghazavi, M., Roustaie, M., 2010. The Influence of Freeze-thaw Cycles on the Unconfined Compressive Strength of Fiber- reinforced Clay, Cold Regions Science and Technology, 61, 125-131.
  • 43. Güllü, H., Hazirbaba, K., 2010. California Bearing Ratio Improvement and Freeze-thaw Performance of Fine-grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 63, 50-60.
  • 44. Jafari, M., Esna-Ashari, M., 2012. Effect of Waste Tire Cord Reinforcement on Unconfined Compressive Strength of Lime Stabilized Clayey Soil Under Freeze–Thaw Condition, Cold Regions Science and Technology, 82, 21–29.
  • 45. Yarbaşı, N., 2016. Atık Lastik Parçalarıyla Güçlendirilmiş Killi Zeminlerin Donma- Çözülme Davranışı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 559-562.
  • 46. Kalkan, E., 2009. Effects of Silica Fume on The Geotechnical Properties of Fine-Grained Soils Exposed to Freeze and Thaw, Cold Regions Science and Technology, 58(3), 130-135.
  • 47. Kalkan, E., 2013. Preparation of Scrap Tires Rubber Fiber-Silica Fume Mixtures for Modification of Clayey Soils, Applied Clay Science, 80-81, 117-125.
  • 48. Zaimoğlu, A.Ş., 2010. Freezing-thawing Behavior of Fine-grained Soils Reinforced with Polypropylene Fibers, Cold Regions Science and Technology, 60, 63-65.
  • 49. Zorluer, I., Demirbas, A., 2013. Use of Marble Dust and Fly Ash in Stabilization of Base Material, Science and Engineering of Composite Materials, 20(1), 47-55.
  • 50. Zaimoğlu, A.Ş., Hattatoğlu, F., Akbulut, R.K., 2013. Yüke Maruz İnce Taneli Zeminlerin Donma-çözülme Davranışı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 117-121.
  • 51. Zaimoğlu, A.Ş., Akbulut, R.K., Arasan, S., 2015. Effect of Freze-thaw Cycles on Strength Behavior of Compacted Chicken Quill Clay Composite in Undrained Loading. Journal of Natural Fibers, 13(3), 299-308.
  • 52. Zaimoğlu, A.Ş., Calik, Y., Akbulut, R.K., Yetimoglu, T., 2016. A Study on Freeze-thaw Behavior of Randomly Distributed Fiber- reinforced Soil. Periodica Polytechnica: Civil Engineering, 60(1), 3-9.
  • 53. Andersland, O.B., Ladanyi, B., 1994. An Introduction to Frozen Ground Engineering. Second Edition. The American Society of Civil Engineering, John Wiley & Sons Inc., New Jersey.
  • 54. Simonsen, E., Isacsson, U., 1999. Thaw Weakening of Pavement Structures in Cold Regions. Cold Regions Science and Technology, 29, 135-151.
  • 55. Wang, D., Ma, W., Niu, Y., Chang, X., Wen, Z., 2007. Effects of Cyclic Freezing and Thawing on Mechanical Properties of Qighai- Tibet Clay. Cold Region and Science Technology, 48, 34-43.
  • 56. Qi, J., Ma, W., Song, C., 2008. Influence of Freeze-thaw on Engineering Properties of a Silty Soil. Cold Region Science and Technology, 53, 397-404.
  • 57. Tester, R.E., Gaskin, P.N., 1996. Effect of Fines Content on Frost Heave. Canadian Geotechnical Journal, 33, 678-680.
  • 58. Hermansson, A., 2002. Laboratory and Field Testing on Rate of Frost Heave Versus Heat Extraction. Cold Region and Science Technology, 38, 137-151.
  • 59. Konrad, J.M., Lemieux, N., 2005. Influence of Fines on Frost Heave Characteristics of a Well- graded Base-course Material. Canadian Geotechnical Journal, 42, 515-527.
  • 60. Hui, B., Ping, H., 2009. Frost Heave and Dry Density Changes During Cyclic Freeze-thaw of Silty Clay. Permafrost and Periglacial Processes, 20, 65-70.
  • 61. Rempel, A., 2010. Frost Heave. Journal of Glaciology, 56(200), 1122-1128.
  • 62. TS 1500, 2000: İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması, Türk Standartları Enstitüsü. Ankara.
  • 63. Hazirbaba, K., Zhang, Y., Hulsey J.L., 2011. Evaluation of Temperature and Freeze-thaw Effects on Excess Pore Pressure Generation of Fine-grained Soils. Soil Dynamics and Earthquake Engineering, 31, 372-384.
  • 64. Liu, J., Wang, T., Tian, Y., 2010. Experimental Study of the Dynamic Properties of Cement- and lime- Modified Clay Soils Subjected to Freeze-thaw Cycles. Cold Regions Science and Technology, 61, 29-33.
  • 65. TS 1900-2, 2006: İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standartları Enstitüsü, Ankara.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Barış Mahmutluoğlu Bu kişi benim

Baki Bağrıaçık Bu kişi benim

Yayımlanma Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 3

Kaynak Göster

APA Mahmutluoğlu, B., & Bağrıaçık, B. (2020). Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(3), 783-796. https://doi.org/10.21605/cukurovaummfd.846739
AMA Mahmutluoğlu B, Bağrıaçık B. Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi. cukurovaummfd. Eylül 2020;35(3):783-796. doi:10.21605/cukurovaummfd.846739
Chicago Mahmutluoğlu, Barış, ve Baki Bağrıaçık. “Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35, sy. 3 (Eylül 2020): 783-96. https://doi.org/10.21605/cukurovaummfd.846739.
EndNote Mahmutluoğlu B, Bağrıaçık B (01 Eylül 2020) Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35 3 783–796.
IEEE B. Mahmutluoğlu ve B. Bağrıaçık, “Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi”, cukurovaummfd, c. 35, sy. 3, ss. 783–796, 2020, doi: 10.21605/cukurovaummfd.846739.
ISNAD Mahmutluoğlu, Barış - Bağrıaçık, Baki. “Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 35/3 (Eylül 2020), 783-796. https://doi.org/10.21605/cukurovaummfd.846739.
JAMA Mahmutluoğlu B, Bağrıaçık B. Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi. cukurovaummfd. 2020;35:783–796.
MLA Mahmutluoğlu, Barış ve Baki Bağrıaçık. “Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 35, sy. 3, 2020, ss. 783-96, doi:10.21605/cukurovaummfd.846739.
Vancouver Mahmutluoğlu B, Bağrıaçık B. Killi Zeminlerin Donma-Çözülme Davranışlarında Cam Atık Çamurunun Etkisi. cukurovaummfd. 2020;35(3):783-96.