Öz
Hyperspectral (HS) and Light Detection and Ranging (LiDAR) sensors are the two of the newest remote sensing technologies. In recent decades, hyperspectral unmixing analysis has achieved a great importance in remote sensing applications. Spectral variability can occur in hyperspectral images due to some reasons.
This spectral variability can cause serious abundance estimation errors in hyperspectral image analysis. On the other hand, LiDAR data provides the Digital Surface Model (DSM) data that does not affected by spectral variability. In this study, in order to decrease the spectral variability on hyperspectral imagery, Stable Zone Unmixing (SZU) approach is used by segmenting of LiDAR-DSM information. Experimental results are carried out on simulation and real data sets and spectral variability is reduced in both images.