Araştırma Makalesi
BibTex RIS Kaynak Göster

Sarsma tablası için diferansiyel gelişim algoritması ile hızlı ve yüksek hassasiyetli kestirici tasarımı

Yıl 2023, Cilt: 1 Sayı: 1, 17 - 29, 10.08.2023

Öz

Sarsma tablası, binaların ve araçların yer sarsıntılarına karşı davranışlarının incelenebildiği deneysel bir sistemdir. Sarsma tablası, istenilen teknik özellikleri sağlayacak şekilde elektrik, mekanik ve hidrolik parçalardan oluşur. Özellikle bu bahsedilen parçalar ile tasarlanan lineer olmayan sarsma tablası sisteminde harmonikler kaçınılmazdır. Harmonik, bir sistemin kontrol performansını azaltan ve sistemden elde edilen çıkış sinyalini bozan istenmeyen rahatsız edici bir sinyaldir. Bu nedenle harmoniklerin tanımlanması ve ortadan kaldırılması önemli bir tasarım problemidir. Bu çalışmada, özellikle sinüzoidal titreşim testlerinde oluşan harmonikleri belirlemek için diferansiyel gelişim algoritması tabanlı ivme harmoniği kestirimcisi tasarlanmıştır. Önerilen kestirim yaklaşımı hem simülasyon hem de altı harmonik içeren gerçek zamanlı harmonik sinyaller ile analiz edilmiştir. Ayrıca genlik ve faz kestirim sonuçları ısıl tavlama algoritması ile elde edilen sonuçlarla karşılaştırılmıştır. Kısaca diferansiyel gelişim algoritması kullanılarak hızlı ve yüksek değerli tahmin edici tasarımı gerçekleştirilmiş ve literatürde elde edilen tahmin sonuçları ile avantajları ortaya konmuştur.

Kaynakça

  • [1] Ji X., Kajiwara K., Nagae T., Enokida R., Nakashima M., A substructure shaking table test for reproduction of earthquake responses of high-rise buildings, Earthquake Engineering and Structural Dynamics, 38 (12) (2009) 1381-1399.
  • [2] Shen W., Wang J.Z., Wang S.K., The control of the electro-hydraulic shaking table based on dynamic surface adaptive robust control, Transactions of the Institute of Measurement and Control, 39(8) (2017) 1271-1280.
  • [3] Yao J., Yan H., Xiao R., Di D., Jiang G., Gao S., Yu H., Sinusoidal acceleration harmonic estimation using the extended Kalman filter for an electro-hydraulic servo shaking table, Journal of Vibration and Control, 21(8) (2015) 1566-1579.
  • [4] Yao J.J., Hu S.H., Fu W., Han J.W., Impact of excitation signal upon the acceleration harmonic distortion of an electro-hydraulic shaking table, Journal of Vibration and Control, 17(7) (2011) 1106-1111.
  • [5] Yao J., Acceleration Harmonic Cancellation of Electro-hydraulic Servo Shaking Table, Chinese Journal of Mechanical Engineering, 46(3) (2010).
  • [6] Yao J., Jiang G., Di D., Liu S., Acceleration harmonic identification for an electro-hydraulic servo shaking table based on the normalized least-mean-square adaptive algorithm, Journal of Vibration and Control, 19(1) (2013) 47-55.
  • [7] Yao J., Hu. S, Fu. W, et al., Harmonic cancellation for electro-hydraulic servo shaking table based on LMS adaptive algorithm, Journal of Vibration and Control, 17(12) (2011) 1862-1868.
  • [8] Yao J., Wan Z., Fu Y., Acceleration Harmonic Estimation for Hydraulic Servo Shaking Table by Using Simulated Annealing Algorithm, Applied Sciences, 8(4) (2018) 524.
  • [9] Lu Z., Ji T.Y., Tang W.H., et al., Optimal Harmonic Estimation Using A Particle Swarm Optimizer, IEEE Transactions on Power Delivery, 23 (2) (2008) 1166-1174.
  • [10] Ray R.N., Chatterjee D., Goswami S.K., An application of PSO technique for harmonic elimination in a PWM inverter, Applied Soft Computing, 9(4) (2009) 1315-1320.
  • [11] Yao J., Yu H., Dietz M., Xiao R., Chen S., Wang T., Niu Q. Acceleration harmonic estimation for a hydraulic shaking table by using particle swarm optimization, Transactions of the Institute of Measurement and Control, 39(5) (2017) 738-747.
  • [12] Yao J., Wan Z., Fu Y., Acceleration Harmonic Estimation in a Hydraulic Shaking Table Using Water Cycle Algorithm, J Shock and Vibration, (2018) 12.
  • [13] Kockanat S., Acceleration Harmonic Estimation for Hydraulic Shaking Table Using Bat Algorithm, European Journal of Science and Technology, 15 (2019) 387-393.
  • [14] Kockanat S., Acceleration Harmonic Estimation using an Approach based Artificial Bee Colony Algorithm: A Hydraulic Shaking Table Application, 2019 27th Signal Processing and Communications Applications Conference (SIU), (2019) 1-4.
  • [15] Yao J., Wan Z., Fu Y., et al., An Artificial Bee Colony Algorithm for Solving Hydraulic Shaking Table Acceleration Harmonic Estimation Problem, ASME 2018 Noise Control and Acoustics Division Conference, (2018) 1-5.
  • [16] Storn R., Price K., Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, 11 (4) (1997) 341-359.

Fast and high preciously estimator design with differential evolution algorithm for shaking table

Yıl 2023, Cilt: 1 Sayı: 1, 17 - 29, 10.08.2023

Öz

The shaking table is an experimental system in which the behavior of buildings and vehicles against ground shocks can be examined. A shaking table consists of electrical, mechanical and hydraulic parts to provide the desired technical specifications. In particular, harmonics are inevitable in the nonlinear shaking table system designed by these aforementioned parts. Harmonic is an undesirable disturbing signal that reduces the control performance of a system and distorts the output signal obtained from the system. Therefore, the identification and elimination of harmonics is an important design problem. In this paper, an acceleration harmonic estimator based differential evolution algorithm has been designed to determine the harmonics that occur especially in sinusoidal vibration tests. The proposed estimation approach was analyzed with both simulation and real-time harmonic signals including six harmonics. In addition, the amplitude and phase estimation results were compared with the results obtained by the simulated annealing algorithm. In short, fast and high preciously estimator design was realized by using differential evolution algorithm and its advantages were demonstrated with the obtained estimation results in literature.

Kaynakça

  • [1] Ji X., Kajiwara K., Nagae T., Enokida R., Nakashima M., A substructure shaking table test for reproduction of earthquake responses of high-rise buildings, Earthquake Engineering and Structural Dynamics, 38 (12) (2009) 1381-1399.
  • [2] Shen W., Wang J.Z., Wang S.K., The control of the electro-hydraulic shaking table based on dynamic surface adaptive robust control, Transactions of the Institute of Measurement and Control, 39(8) (2017) 1271-1280.
  • [3] Yao J., Yan H., Xiao R., Di D., Jiang G., Gao S., Yu H., Sinusoidal acceleration harmonic estimation using the extended Kalman filter for an electro-hydraulic servo shaking table, Journal of Vibration and Control, 21(8) (2015) 1566-1579.
  • [4] Yao J.J., Hu S.H., Fu W., Han J.W., Impact of excitation signal upon the acceleration harmonic distortion of an electro-hydraulic shaking table, Journal of Vibration and Control, 17(7) (2011) 1106-1111.
  • [5] Yao J., Acceleration Harmonic Cancellation of Electro-hydraulic Servo Shaking Table, Chinese Journal of Mechanical Engineering, 46(3) (2010).
  • [6] Yao J., Jiang G., Di D., Liu S., Acceleration harmonic identification for an electro-hydraulic servo shaking table based on the normalized least-mean-square adaptive algorithm, Journal of Vibration and Control, 19(1) (2013) 47-55.
  • [7] Yao J., Hu. S, Fu. W, et al., Harmonic cancellation for electro-hydraulic servo shaking table based on LMS adaptive algorithm, Journal of Vibration and Control, 17(12) (2011) 1862-1868.
  • [8] Yao J., Wan Z., Fu Y., Acceleration Harmonic Estimation for Hydraulic Servo Shaking Table by Using Simulated Annealing Algorithm, Applied Sciences, 8(4) (2018) 524.
  • [9] Lu Z., Ji T.Y., Tang W.H., et al., Optimal Harmonic Estimation Using A Particle Swarm Optimizer, IEEE Transactions on Power Delivery, 23 (2) (2008) 1166-1174.
  • [10] Ray R.N., Chatterjee D., Goswami S.K., An application of PSO technique for harmonic elimination in a PWM inverter, Applied Soft Computing, 9(4) (2009) 1315-1320.
  • [11] Yao J., Yu H., Dietz M., Xiao R., Chen S., Wang T., Niu Q. Acceleration harmonic estimation for a hydraulic shaking table by using particle swarm optimization, Transactions of the Institute of Measurement and Control, 39(5) (2017) 738-747.
  • [12] Yao J., Wan Z., Fu Y., Acceleration Harmonic Estimation in a Hydraulic Shaking Table Using Water Cycle Algorithm, J Shock and Vibration, (2018) 12.
  • [13] Kockanat S., Acceleration Harmonic Estimation for Hydraulic Shaking Table Using Bat Algorithm, European Journal of Science and Technology, 15 (2019) 387-393.
  • [14] Kockanat S., Acceleration Harmonic Estimation using an Approach based Artificial Bee Colony Algorithm: A Hydraulic Shaking Table Application, 2019 27th Signal Processing and Communications Applications Conference (SIU), (2019) 1-4.
  • [15] Yao J., Wan Z., Fu Y., et al., An Artificial Bee Colony Algorithm for Solving Hydraulic Shaking Table Acceleration Harmonic Estimation Problem, ASME 2018 Noise Control and Acoustics Division Conference, (2018) 1-5.
  • [16] Storn R., Price K., Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, Journal of Global Optimization, 11 (4) (1997) 341-359.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Devreleri ve Sistemleri, Sinyal İşleme
Bölüm Araştırma Makaleleri
Yazarlar

Serdar Koçkanat

Erken Görünüm Tarihi 10 Ağustos 2023
Yayımlanma Tarihi 10 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 1

Kaynak Göster

IEEE S. Koçkanat, “Fast and high preciously estimator design with differential evolution algorithm for shaking table”, CÜMFAD, c. 1, sy. 1, ss. 17–29, 2023.