Araştırma Makalesi
BibTex RIS Kaynak Göster

Role of GLP-1 receptors in the effect of hypericin on mouse neuroblastoma cell line (NB2a)

Yıl 2025, Cilt: 50 Sayı: 4, 1163 - 1174, 22.12.2025
https://doi.org/10.17826/cumj.1786639

Öz

Purpose: This study aimed to evaluate the possible neurotoxic effects of hypericin in mouse neuroblastoma cell culture, the potential neuroprotective effects against chlorpyrifos-induced neurotoxicity, and the role of the Glucagon-like peptide-1 (GLP-1) receptor in these effects.
Materials and Methods: The toxic effects of hypericin and the GLP-1 receptor antagonist exendin 9-39 were evaluated using the neurotoxicity screening test (NTT), Annexin V method, and Luminoskan test. The role of the GLP-1 receptor was assessed in the absence and presence of exendin 9-39.
Results: Hypericin significantly decreased cell viability at high concentrations of 30 and 100 µM to 70,47% and 93,30% respectively. The addition of 30 µM exendin 9-39 slightly but significantly increased viability for a 100 µM concentration of hypericin. Although hypericin increased total apoptosis at these doses, the increase was not significant. According to NTT results, hypericin showed a significant dose-dependent neurotoxic effect, starting at 0.1 µM, by inhibiting neurite outgrowth by up to 77,89%. Addition of exendin 9-39 significantly reversed this neurotoxic effect at high hypericin doses.
Conclusions: Hypericin decreased cell viability at high concentrations, which is likely related to its anticancer activity. The reversal of this effect by exendin 9-39 was interpreted as a possible contribution of GLP-1 receptors. The fact that hypericin inhibited neurite outgrowth even at low concentrations suggests it may have neurotoxic activity. Given the widespread use of St. John's Wort, whose active ingredient is hypericin, in the treatment of central nervous system disorders, further research is warranted, and its use is recommended with caution.

Destekleyen Kurum

Manisa Celal Bayar University Scientific Research Projects

Proje Numarası

2024-011

Kaynakça

  • Agnello L, Gambino CM, Lo Sasso B, Bivona G, Milano S, Ciaccio AM et al. Neurogranin as a novel biomarker in Alzheimer’s disease. Lab Med. 2021;52:188-96.
  • Cheng YJ, Lin CH, Lane HY. From menopause to neurodegeneration: molecular basis and potential therapy. Int J Mol Sci. 2021;22:8654.
  • Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-Dos-Santos C, de Souza TP, Souza Port's NM et al. Nuclear and mitochondrial genome, epigenome, and gut microbiome: emerging molecular biomarkers for Parkinson’s disease. Int J Mol Sci. 2021;22:9839.
  • Kholghi G, Arjmandi-Rad S, Zarrindast MR, Vaseghi S. St. Johnʼs wort (Hypericum perforatum) and depression: what happens to the neurotransmitter systems. Naunyn Schmiedebergs Arch Pharmacol, 2022;395:629-42.
  • Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X et al. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Front Pharmacol. 2019;10:1272.
  • Matos ADR, Caetano BC, de Almeida Filho JL, Martins JSCC, de Oliveira MGP, Sousa TDC et al. Identification of Hypericin as a candidate repurposed therapeutic agent for COVID-19 and its potential anti-SARS-CoV-2 activity. Front Microbiol. 2022;13:828984.
  • Majerník M, Jendželovský R, Babinčák M, Košuth J, Ševc J, Tonelli Gombalová Z et al. Novel insights into the effect of Hyperforin and photodynamic therapy with Hypericin on chosen angiogenic factors in colorectal micro-tumors created on the chorioallantoic membrane. Int J Mol Sci. 2019;20:3004.
  • Luo L, Sun Q, Mao YY, Lu YH, Tan RX. Inhibitory effects of flavonoids from Hypericum perforatum on nitric oxide synthase. J Ethnopharmacol. 2004;93:221-5.
  • Yuan X, Yan F, Gao LH, Ma QH, Wang J. Hypericin as a potential drug for treating Alzheimer’s disease and type 2 diabetes with a view to drug repositioning. CNS Neurosci Ther. 2023;29:3307-21.
  • Novelli M, Masiello P, Beffy P, Menegazzi M. Protective role of St. John’s Wort and its components Hyperforin and Hypericin against diabetes through inhibition of inflammatory signaling: evidence from in vitro and in vivo studies. Int J Mol Sci. 2020;21:8108.
  • Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007;1776:86-107.
  • Theodossiou TA, Noronha-Dutra A, Hothersall JS. Mitochondria are a primary target of hypericin phototoxicity: Synergy of intracellular calcium mobilisation in cell killing. Int J Biochem Cell Biol. 2006;38:1946-56.
  • Franek E, Gajos G, Gumprecht J, Kretowski A, Zahorska-Markiewicz B, Małecki MT. The role of glucagon-like peptide 1 in glucose homeostasis and in other aspects of human physiology. Pol Arch Med Wewn. 2009;119:743-51.
  • Calsolaro V, Edison P. Novel GLP-1 (Glucagon-Like Peptide-1) analogues and insulin in the treatment of alzheimer’s disease and other neurodegenerative diseases. CNS Drugs. 2015;29:1023-39.
  • Muscogiuri G, DeFronzo RA, Gastaldelli A, Holst JJ. Glucagon-like peptide-1 and the central/peripheral nervous system: crosstalk in diabetes. Trends Endocrinol Metab. 2017;28:88-103.
  • Gaitonde S, Kohli R, Seeley R. The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. J Surg Res. 2012;178:33-9.
  • Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24:931-8.
  • Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143:3067-76.
  • During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X et al. The glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9:1173-9.
  • Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol Metab. 2021;47:101180.
  • Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol Environ Saf. 2020;200:110731.
  • Muñoz-Torrero D, Schopfer LM, Lockridge O. Chlorpyrifos oxon activates glutamate and lysine for protein cross-linking. Chem Res Toxicol. 2023;36:112-21.
  • Vural K, Seyrek O. The neuroprotective effect of pioglitazone on NB2a mouse neuroblastoma cell culture. Kafkas Univ Vet Fak Derg. 2019;25:1-8.
  • Voss U, Sand E, Hellström PM, Ekblad E. Glucagon-like peptides 1 and 2 and vasoactive intestinal peptide are neuroprotective on cultured and mast cell co-cultured rat myenteric neurons. BMC Gastroenterol. 2012;12:30.
  • Tseng YT, Lin WJ, Chang WH, Lo YC. The novel protective effects of loganin against 1-methyl-4-phenylpyridinium-induced neurotoxicity: Enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway. Phytother Res. 2019;33:690-701.
  • Hansel DE, Eipper BA, Ronnett GV. Neuropeptide Y functions as a neuroproliferative factor. Nature. 2001;410:940-4.
  • Freeman MP. Complementary and alternative Medicine (CAM): considerations for the treatment of major depressive disorder. J Clin Psychiatry. 2009;70:4-6.
  • Lei C, Li N, Chen J, Wang Q. Hypericin ameliorates depression-like behaviors via neurotrophin signaling pathway mediating m6A epitranscriptome modification. Molecules. 2023;28:3859.
  • Naderi M, Rahmani Cherati M, Mohammadian A, Baghery Bidhendy M, Ghiasvand S, Zare Marzouni H et al. Hypericin induces apoptosis in the AGS cell line with no significant effect on normal cells. Iran J Pharm Res. 2020;19:349-57.
  • Mirmalek SA, Azizi MA, Jangholi E, Yadollah-Damavandi S, Javidi MA, Parsa Y et al. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum, on the MCF-7 human breast cancer cell line. Cancer Cell Int. 2016;16:3.
  • Hu J, Song J, Tang Z, Wei S, Chen L, Zhou R. Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis. Eur J Pharmacol. 2021;900:174071.
  • Ferenc P, Solár P, Kleban J, Mikes J, Fedorocko P. Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells. J Photochem Photobiol B. 2010;98:25-34.
  • Arani HZ, Olya M, Mirahmadi AS, Saleki H, Atashi HA, Marzouni HZ, et al. Hypericin induces apoptosis in K562 cells by downregulating Myc and Mdm2. J Cancer Res Ther. 2021;17:242-7.
  • Özen KP, Şahin F, Avcı ÇB, Hışıl Y, Gündüz C, Saydam G. Hypericium perforatum extract (St. John’s Wort) and hypericin induce apoptosis in leukemic HL-60 cells by affecting h-TERT activity. Turk J Haematol. 2007;24:127-33.
  • Kim JI, Park JH, Park HJ, Choi SK, Lee KT. Induction of differentiation of the human histiocytic lymphoma cell line U-937 by hypericin. Arch Pharm Res. 1998;21:41-5.
  • Doroshenko A, Tomkova S, Kozar T, Stroffekova K. Hypericin, a potential new BH3 mimetic. Front Pharmacol. 2022;13:991554.
  • Cirak C, Radusiene J, Jakstas V, Ivanauskas L, Seyis F, Yayla F. Secondary metabolites of seven Hypericum species growing in Turkey. Pharm Biol. 2016;54:2244-53.
  • Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K et al. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes. 2014;63:3891-905.
  • Li XN, Bu HM, Ma XH, Lu S, Zhao S, Cui YL et al. Glucagon-like Peptide-1 analogues inhibit proliferation and increase apoptosis of human prostate cancer cells in vitro. Exp Clin Endocrinol Diabetes. 2017;125:91-7.
  • Beutel AK, Halbrook CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol. 2023;324:C540-52.
  • Chang Y, Wang SJ. Hypericin, the active component of St. John’s Wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway. Eur J Pharmacol. 2010;634:53-61.
  • Kaltschmidt B, Heinrich M, Kaltschmidt C. Stimulus-dependent activation of NF-kappaB specifies apoptosis or neuroprotection in cerebellar granule cells. Neuromolecular Med. 2002;2:299-309.
  • Béjaoui A, Ben Salem I, Rokbeni N, M'rabet Y, Boussaid M, Boulila A. Bioactive compounds from Hypericum humifusum and Hypericum perfoliatum: inhibition potential of polyphenols with acetylcholinesterase and key enzymes linked to type-2 diabetes. Pharm Biol. 2017;55:906-11.
  • Velmurugan K, Bouchard R, Mahaffey G, Pugazhenthi S. Neuroprotective actions of Glucagon‐like peptide‐1 in differentiated human neuroprogenitor cells. J Neurochem. 2012;123:919-31.
  • Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T et al. Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience. 2009;162:1212-9.
  • Fang Y, Jiang D, Wang Y, Wang Q, Lv D, Liu J et al. Neuroprotection of rhGLP‐1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Dev Res. 2018;79:249-59.
  • Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide one receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation. 2008;5:19.
  • Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J et al. Peptide hormone exendin‐4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson’s disease. J Neurosci Res. 2008;86:326-38.
  • Abuirmeileh A, Harkavyi A, Rampersaud N, Lever R, Tadross JA, Bloom SR et al. Exendin-4 treatment enhances L-DOPA-evoked release of striatal dopamine and decreases dyskinetic movements in the 6-hydroxydopamine lesioned rat. J Pharm Pharmacol. 2012;64:637-43.

Hiperisinin fare nöroblastoma hücre hattı (NB2a) üzerindeki etkisinde GLP-1 reseptörlerinin rolü

Yıl 2025, Cilt: 50 Sayı: 4, 1163 - 1174, 22.12.2025
https://doi.org/10.17826/cumj.1786639

Öz

Amaç: Bu çalışmanın amacı, hiperisin'in fare nöroblastoma hücre kültürü üzerindeki olası nörotoksik etkilerini ve klorpirifos kaynaklı nörotoksisite üzerindeki olası nöroprotektif etkilerini değerlendirmek ve bu etkilerde Glukagon benzeri peptid-1 (GLP-1) reseptörünün rolünü araştırmaktır.
Gereç ve Yöntem: Hiperisin ve GLP-1 reseptör antagonisti eksendin 9-39'un toksik etkileri nörotoksisite tarama testi (NTT), Annexin V yöntemi ve Luminoskan testi kullanılarak değerlendirildi. GLP-1 reseptörünün rolü, eksendin 9-39'un yokluğunda ve varlığında değerlendirildi.
Bulgular: Hiperisin, 30 ve 100 µM gibi yüksek konsantrasyonlarda hücre canlılığını sırasıyla %70,47 ve %93,30 oranında önemli ölçüde azalttı. 30 µM eksendin 9-39 ilavesi, 100 µM hiperisin konsantrasyonunda canlılığı hafif ancak anlamlı bir şekilde artırdı. Hiperisin bu dozlarda toplam apoptozu artırmasına rağmen, artış anlamlı değildi. NTT sonuçlarına göre, hiperisin 0,1 µM'den başlayarak nörit büyümesini %77,89'a kadar inhibe ederek anlamlı doz bağımlı nörotoksik etki gösterdi. Eksendin 9-39 ilavesi, yüksek hiperisin dozlarında bu nörotoksik etkiyi önemli ölçüde tersine çevirdi.
Sonuç: Hiperisin, yüksek konsantrasyonlarda hücre canlılığını azaltmıştır ve bu durum muhtemelen antikanser aktivitesiyle ilişkilidir. Bu etkinin eksendin 9-39 tarafından tersine çevrilmesi, GLP-1 reseptörlerinin olası bir katkısı olarak yorumlanmıştır. Hiperisin'in düşük konsantrasyonlarda bile nörit büyümesini engellemesi, hiperisin'in potansiyel nörotoksik aktiviteye sahip olabileceğini düşündürmektedir. Etken maddesi hiperisin olan Sarı Kantaron'un merkezi sinir sistemi bozukluklarında yaygın kullanımı göz önüne alındığında, bu madde üzerinde daha fazla araştırma yapılması ve dikkatli kullanılması gerektiği ortaya çıkmaktadır.

Destekleyen Kurum

Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

2024-011

Kaynakça

  • Agnello L, Gambino CM, Lo Sasso B, Bivona G, Milano S, Ciaccio AM et al. Neurogranin as a novel biomarker in Alzheimer’s disease. Lab Med. 2021;52:188-96.
  • Cheng YJ, Lin CH, Lane HY. From menopause to neurodegeneration: molecular basis and potential therapy. Int J Mol Sci. 2021;22:8654.
  • Fonseca Cabral G, Schaan AP, Cavalcante GC, Sena-Dos-Santos C, de Souza TP, Souza Port's NM et al. Nuclear and mitochondrial genome, epigenome, and gut microbiome: emerging molecular biomarkers for Parkinson’s disease. Int J Mol Sci. 2021;22:9839.
  • Kholghi G, Arjmandi-Rad S, Zarrindast MR, Vaseghi S. St. Johnʼs wort (Hypericum perforatum) and depression: what happens to the neurotransmitter systems. Naunyn Schmiedebergs Arch Pharmacol, 2022;395:629-42.
  • Chen H, Muhammad I, Zhang Y, Ren Y, Zhang R, Huang X et al. Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Front Pharmacol. 2019;10:1272.
  • Matos ADR, Caetano BC, de Almeida Filho JL, Martins JSCC, de Oliveira MGP, Sousa TDC et al. Identification of Hypericin as a candidate repurposed therapeutic agent for COVID-19 and its potential anti-SARS-CoV-2 activity. Front Microbiol. 2022;13:828984.
  • Majerník M, Jendželovský R, Babinčák M, Košuth J, Ševc J, Tonelli Gombalová Z et al. Novel insights into the effect of Hyperforin and photodynamic therapy with Hypericin on chosen angiogenic factors in colorectal micro-tumors created on the chorioallantoic membrane. Int J Mol Sci. 2019;20:3004.
  • Luo L, Sun Q, Mao YY, Lu YH, Tan RX. Inhibitory effects of flavonoids from Hypericum perforatum on nitric oxide synthase. J Ethnopharmacol. 2004;93:221-5.
  • Yuan X, Yan F, Gao LH, Ma QH, Wang J. Hypericin as a potential drug for treating Alzheimer’s disease and type 2 diabetes with a view to drug repositioning. CNS Neurosci Ther. 2023;29:3307-21.
  • Novelli M, Masiello P, Beffy P, Menegazzi M. Protective role of St. John’s Wort and its components Hyperforin and Hypericin against diabetes through inhibition of inflammatory signaling: evidence from in vitro and in vivo studies. Int J Mol Sci. 2020;21:8108.
  • Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007;1776:86-107.
  • Theodossiou TA, Noronha-Dutra A, Hothersall JS. Mitochondria are a primary target of hypericin phototoxicity: Synergy of intracellular calcium mobilisation in cell killing. Int J Biochem Cell Biol. 2006;38:1946-56.
  • Franek E, Gajos G, Gumprecht J, Kretowski A, Zahorska-Markiewicz B, Małecki MT. The role of glucagon-like peptide 1 in glucose homeostasis and in other aspects of human physiology. Pol Arch Med Wewn. 2009;119:743-51.
  • Calsolaro V, Edison P. Novel GLP-1 (Glucagon-Like Peptide-1) analogues and insulin in the treatment of alzheimer’s disease and other neurodegenerative diseases. CNS Drugs. 2015;29:1023-39.
  • Muscogiuri G, DeFronzo RA, Gastaldelli A, Holst JJ. Glucagon-like peptide-1 and the central/peripheral nervous system: crosstalk in diabetes. Trends Endocrinol Metab. 2017;28:88-103.
  • Gaitonde S, Kohli R, Seeley R. The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. J Surg Res. 2012;178:33-9.
  • Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24:931-8.
  • Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain. 2020;143:3067-76.
  • During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X et al. The glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9:1173-9.
  • Zheng J, Xie Y, Ren L, Qi L, Wu L, Pan X et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol Metab. 2021;47:101180.
  • Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol Environ Saf. 2020;200:110731.
  • Muñoz-Torrero D, Schopfer LM, Lockridge O. Chlorpyrifos oxon activates glutamate and lysine for protein cross-linking. Chem Res Toxicol. 2023;36:112-21.
  • Vural K, Seyrek O. The neuroprotective effect of pioglitazone on NB2a mouse neuroblastoma cell culture. Kafkas Univ Vet Fak Derg. 2019;25:1-8.
  • Voss U, Sand E, Hellström PM, Ekblad E. Glucagon-like peptides 1 and 2 and vasoactive intestinal peptide are neuroprotective on cultured and mast cell co-cultured rat myenteric neurons. BMC Gastroenterol. 2012;12:30.
  • Tseng YT, Lin WJ, Chang WH, Lo YC. The novel protective effects of loganin against 1-methyl-4-phenylpyridinium-induced neurotoxicity: Enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway. Phytother Res. 2019;33:690-701.
  • Hansel DE, Eipper BA, Ronnett GV. Neuropeptide Y functions as a neuroproliferative factor. Nature. 2001;410:940-4.
  • Freeman MP. Complementary and alternative Medicine (CAM): considerations for the treatment of major depressive disorder. J Clin Psychiatry. 2009;70:4-6.
  • Lei C, Li N, Chen J, Wang Q. Hypericin ameliorates depression-like behaviors via neurotrophin signaling pathway mediating m6A epitranscriptome modification. Molecules. 2023;28:3859.
  • Naderi M, Rahmani Cherati M, Mohammadian A, Baghery Bidhendy M, Ghiasvand S, Zare Marzouni H et al. Hypericin induces apoptosis in the AGS cell line with no significant effect on normal cells. Iran J Pharm Res. 2020;19:349-57.
  • Mirmalek SA, Azizi MA, Jangholi E, Yadollah-Damavandi S, Javidi MA, Parsa Y et al. Cytotoxic and apoptogenic effect of hypericin, the bioactive component of Hypericum perforatum, on the MCF-7 human breast cancer cell line. Cancer Cell Int. 2016;16:3.
  • Hu J, Song J, Tang Z, Wei S, Chen L, Zhou R. Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis. Eur J Pharmacol. 2021;900:174071.
  • Ferenc P, Solár P, Kleban J, Mikes J, Fedorocko P. Down-regulation of Bcl-2 and Akt induced by combination of photoactivated hypericin and genistein in human breast cancer cells. J Photochem Photobiol B. 2010;98:25-34.
  • Arani HZ, Olya M, Mirahmadi AS, Saleki H, Atashi HA, Marzouni HZ, et al. Hypericin induces apoptosis in K562 cells by downregulating Myc and Mdm2. J Cancer Res Ther. 2021;17:242-7.
  • Özen KP, Şahin F, Avcı ÇB, Hışıl Y, Gündüz C, Saydam G. Hypericium perforatum extract (St. John’s Wort) and hypericin induce apoptosis in leukemic HL-60 cells by affecting h-TERT activity. Turk J Haematol. 2007;24:127-33.
  • Kim JI, Park JH, Park HJ, Choi SK, Lee KT. Induction of differentiation of the human histiocytic lymphoma cell line U-937 by hypericin. Arch Pharm Res. 1998;21:41-5.
  • Doroshenko A, Tomkova S, Kozar T, Stroffekova K. Hypericin, a potential new BH3 mimetic. Front Pharmacol. 2022;13:991554.
  • Cirak C, Radusiene J, Jakstas V, Ivanauskas L, Seyis F, Yayla F. Secondary metabolites of seven Hypericum species growing in Turkey. Pharm Biol. 2016;54:2244-53.
  • Nomiyama T, Kawanami T, Irie S, Hamaguchi Y, Terawaki Y, Murase K et al. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth. Diabetes. 2014;63:3891-905.
  • Li XN, Bu HM, Ma XH, Lu S, Zhao S, Cui YL et al. Glucagon-like Peptide-1 analogues inhibit proliferation and increase apoptosis of human prostate cancer cells in vitro. Exp Clin Endocrinol Diabetes. 2017;125:91-7.
  • Beutel AK, Halbrook CJ. Barriers and opportunities for gemcitabine in pancreatic cancer therapy. Am J Physiol Cell Physiol. 2023;324:C540-52.
  • Chang Y, Wang SJ. Hypericin, the active component of St. John’s Wort, inhibits glutamate release in the rat cerebrocortical synaptosomes via a mitogen-activated protein kinase-dependent pathway. Eur J Pharmacol. 2010;634:53-61.
  • Kaltschmidt B, Heinrich M, Kaltschmidt C. Stimulus-dependent activation of NF-kappaB specifies apoptosis or neuroprotection in cerebellar granule cells. Neuromolecular Med. 2002;2:299-309.
  • Béjaoui A, Ben Salem I, Rokbeni N, M'rabet Y, Boussaid M, Boulila A. Bioactive compounds from Hypericum humifusum and Hypericum perfoliatum: inhibition potential of polyphenols with acetylcholinesterase and key enzymes linked to type-2 diabetes. Pharm Biol. 2017;55:906-11.
  • Velmurugan K, Bouchard R, Mahaffey G, Pugazhenthi S. Neuroprotective actions of Glucagon‐like peptide‐1 in differentiated human neuroprogenitor cells. J Neurochem. 2012;123:919-31.
  • Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T et al. Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience. 2009;162:1212-9.
  • Fang Y, Jiang D, Wang Y, Wang Q, Lv D, Liu J et al. Neuroprotection of rhGLP‐1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Dev Res. 2018;79:249-59.
  • Harkavyi A, Abuirmeileh A, Lever R, Kingsbury AE, Biggs CS, Whitton PS. Glucagon-like peptide one receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation. 2008;5:19.
  • Bertilsson G, Patrone C, Zachrisson O, Andersson A, Dannaeus K, Heidrich J et al. Peptide hormone exendin‐4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson’s disease. J Neurosci Res. 2008;86:326-38.
  • Abuirmeileh A, Harkavyi A, Rampersaud N, Lever R, Tadross JA, Bloom SR et al. Exendin-4 treatment enhances L-DOPA-evoked release of striatal dopamine and decreases dyskinetic movements in the 6-hydroxydopamine lesioned rat. J Pharm Pharmacol. 2012;64:637-43.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hücresel Sinir Sistemi
Bölüm Araştırma Makalesi
Yazarlar

Furkan Öztekin 0000-0002-6669-4098

Ertan Darıverenli 0000-0001-9448-4912

Ercüment Ölmez 0000-0003-3535-2471

Sedef Gidener 0000-0002-5182-9789

Proje Numarası 2024-011
Gönderilme Tarihi 18 Eylül 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 22 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 4

Kaynak Göster

MLA Öztekin, Furkan, vd. “Role of GLP-1 receptors in the effect of hypericin on mouse neuroblastoma cell line (NB2a)”. Cukurova Medical Journal, c. 50, sy 4, Aralık 2025, ss. 1163-74, doi:10.17826/cumj.1786639.