Research Article
BibTex RIS Cite

Vitamin B12 eksikliği olan çocuklarda tiyol disülfit dengesi

Year 2021, Volume: 46 Issue: 3, 1278 - 1284, 30.09.2021
https://doi.org/10.17826/cumj.909342

Abstract

Amaç: Bu çalışmada, vitamin B12 eksikliği olan çocuklarda oksidatif stres belirteci olarak tiyol/disülfit dengesinin araştırılması amaçlanmıştır.
Gereç ve Yöntem: Çalışmaya vitamin B12 eksikliği olan 61 çocuk hasta ve 62 sağlıklı çocuk kontrol grubu olarak dahil edildi. Katılımcıların vitamin B12, homosistein, tam kan sayımı ve tiyol/disülfit dengesi parametreleri ölçüldü. Grupların klinik ve laboratuvar parametreleri karşılaştırıldı. Tiyol/disülfit dengesi parametreleri ile vitamin B12 ve homosistein arasındaki ilişki araştırıldı.
Bulgular: Gruplar yaş ve cinsiyet dağılımı açısından benzerdi. Medyan vitamin B12 düzeyi hasta grubunda 179 (98-199) pg/ml, kontrol grubunda 298 (201-965) pg/ml idi. Hasta ve kontrol grubu arasında; homosistein, nativ tiyol, total tiyol, disülfit, disülfit/nativ tiyol oranı, disülfit/total tiyol oranı ve nativ tiyol/total tiyol oranı açısından anlamlı fark saptanmadı. Hasta ve kontrol grubunda, tiyol/disülfit dengesi parametreleri ile vitamin B12 ve homosistein düzeyleri arasında anlamlı korelasyon saptanmadı.
Sonuç: Hasta grubumuzda vitamin B12 düzeyinin belirgin düşük olmaması nedeniyle homosistein düzeyinde anlamlı artış olmadığı düşünülmüştür. Homosisteini artırmayan bir vitamin B12 eksikliğinin, oksidatif stresi artırmayacağı, dolayısıyla antioksidan kapasiteyi de artırmayacağı öngörülebilir.

Supporting Institution

Sakarya Üniversitesi Bilimsel Araştırma Projeler Koordinatörlüğü

Project Number

2019-6-26-01

Thanks

Prof. Dr. Mustafa BÜYÜKAVCI'ya teze katkıları için teşekkür ederiz.

References

  • 1. Green R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 2017;129(19):2603–2611.
  • 2. Honzik T, Adamovicova M, Smolka V, Magner M, Hruba E, Zeman J. Clinical presentation and metabolic consequences in 40 breastfed infants with nutritional vitamin B12 deficiency - What have we learned? Eur. J. Paediatr. Neurol. 2010;14(6):488–495.
  • 3. Devalia V, Hamilton MS, Molloy AM. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014;166(4):496–513.
  • 4. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74.
  • 5. van de Lagemaat E, de Groot L, van den Heuvel E. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients 2019;11(2):482.
  • 6. Moreira ES, Brasch NE, Yun J. Vitamin B12 protects against superoxide-induced cell injury in human aortic endothelial cells. Free Radic. Biol. Med. 2011;51(4):876–883.
  • 7. Chan W, Almasieh M, Catrinescu MM, Levin LA. Cobalamin-Associated Superoxide Scavenging in Neuronal Cells Is a Potential Mechanism for Vitamin B12–Deprivation Optic Neuropathy. Am. J. Pathol. 2018;188(1):160–172.
  • 8. Karamshetty V, Acharya JD, Ghaskadbi S, Goel P. Mathematical modeling of glutathione status in type 2 diabetics with vitamin B 12 deficiency. Front. Cell Dev. Biol. 2016;4(MAR). doi:10.3389/fcell.2016.00016.
  • 9. Green R, Allen LH, Bjørke-Monsen AL, Brito A, Guéant JL, Miller JW, vd. Vitamin B12 deficiency. Nat. Rev. Dis. Prim. 2017;3. doi:10.1038/nrdp.2017.40.
  • 10. Tyagi N, Sedoris KC, Steed M, Ovechkin A V., Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. - Hear. Circ. Physiol. 2005;289(6 58-6). doi:10.1152/ajpheart.00548.2005.
  • 11. Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Içinde: American Journal of Clinical Nutrition.Vol 72. American Society for Nutrition; 2000. doi:10.1093/ajcn/72.2.653s.
  • 12. Turell L, Radi R, Alvarez B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 2013;65:244–253.
  • 13. Jones DP, Liang Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med. 2009;47(10):1329–1338.
  • 14. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: Emerging roles in cell signaling. Biochem. Pharmacol. 2006;71(5):551–564.
  • 15. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem. 2014;47(18):326–332.
  • 16. Erenler AK, Yardan T. Clinical utility of thiol/disulfide homeostasis. Clin. Lab. 2017;63(5–6):867–870.
  • 17. Ozler S, Oztas E, Tokmak A, Ergin M, Isci E, Eren F, vd. The association of thiol/disulphide homeostasis and lipid accumulation index with cardiovascular risk factors in overweight adolescents with polycystic ovary syndrome. Clin. Endocrinol. (Oxf). 2016;84(4):516–523.
  • 18. Kara SS, Erel O, Demirdag TB, Cura Yayla BC, Gulhan B, Neselioglu S, vd. Alteration of thiol-disulphide homeostasis in acute tonsillopharyngitis. Redox Rep. 2017;22(5):205–209.
  • 19. Elmas B, Karacan M, Dervişoğlu P, Kösecik M, İşgüven ŞP, Bal C. Dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in obese children and its relationship with inflammatory-cardiovascular markers. Anatol. J. Cardiol. 2017;18(5):361–369.
  • 20. Uysal P, Avcil S, Neşelioğlu S, Biçer C, Çatal F. Association of oxidative stress and dynamic thiol-disulphide homeostasis with atopic dermatitis severity and chronicity in children: a prospective study. Clin. Exp. Dermatol. 2018;43(2):124–130.
  • 21. Halil H, Tuygun N, Aksoy E, Erel O, Karacan CD. Serum Thiol-Disulphide Levels in Epileptic Pediatric Patients. Comb. Chem. High Throughput Screen. 2019;22(1):65–68.
  • 22. Uçaktürk SA, Allşlk M, Uǧur Ç, Elmaoǧullarl S, Mengen E, Erel Ö. Dynamic Thiol/Disulphide Homeostasis in Children and Adolescents with Non-Autoimmune Subclinical Hypothyroidism. Med. Princ. Pract. 2018;27(1):44–48.
  • 23. Zubarioglu T, Kiykim E, Cansever MS, Neselioglu S, Aktuglu-Zeybek C, Erel O. Evaluation of dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in maple syrup urine disease patients under treatment. Metab. Brain Dis. 2017;32(1):179–184.
  • 24. Çakıcı EK, Eroğlu FK, Yazılıtaş F, Bülbül M, Gür G, Aydoğ Ö, vd. Evaluation of the level of dynamic thiol/disulphide homeostasis in adolescent patients with newly diagnosed primary hypertension. Pediatr. Nephrol. 2018;33(5):847–853.
  • 25. Giden R, Gökdemir MT, Erel Ö, Büyükaslan H, Karabaǧ H. The relationship between serum Thiol levels and thiol/disulfide homeostasis with head trauma in children. Clin. Lab. 2018;64(1–2):163–168.
  • 26. Altinel Acoglu E, Erel O, Yazilitas F, Bulbul M, Oguz MM, Yucel H, vd. Changes in thiol/disulfide homeostasis in juvenile idiopathic arthritis. Pediatr. Int. 2018;60(6):593–596.
  • 27. Kurt ANC, Demir H, Aydin A, Erel Ö. Dynamic thiol/disulphide homeostasis in children with febrile seizure. Seizure 2018;59:34–37.
  • 28. Ayar G, Sahin S, Yazici MU, Neselioglu S, Erel O, Bayrakci US. Effects of Hemodialysis on Thiol-Disulphide Homeostasis in Critically Ill Pediatric Patients with Acute Kidney Injury. Biomed Res. Int. 2018;2018. doi:10.1155/2018/1898671.
  • 29. Yazılıtaş F, Oztek-Celebi FZ, Erel Ö, Çakıcı EK, Alışık M, Bülbül M. Dynamic Thiol/Disulphide Homeostasis in Children with Nephrotic Syndrome. Nephron 2019;142(1):17–25.
  • 30. Kaman A, Aydın Teke T, Gayretli Aydın ZG, Karacan Küçükali G, Neşelioğlu S, Erel Ö, vd. Dynamic thiol/disulphide homeostasis and pathogenesis of Kawasaki disease. Pediatr. Int. 2019;61(9):913–918.
  • 31. Ayar G, Sahin S, Atmaca YM, Yazici MU, Neselioglu S, Erelc O. Thiol-disulphide homeostasis is an oxidative stress indicator in critically ill children with sepsis. Arch. Argent. Pediatr. 2019;117(3):143–148.
  • 32. Solomon LR. Functional cobalamin (vitamin B12) deficiency: Role of advanced age and disorders associated with increased oxidative stress. Eur. J. Clin. Nutr. 2015;69(6):687–692.
  • 33. Ghosh S, Sinha JK, Putcha UK, Raghunath M. Severe but not Moderate Vitamin B12 Deficiency impairs lipid Profile, induces adiposity, and leads to adverse gestational Outcome in Female c57Bl/6 Mice. Front Nutr 2016;3:22.
  • 34. Solomon LR. Low Cobalamin Levels as Predictors of Cobalamin Deficiency: Importance of Comorbidities Associated with Increased Oxidative Stress. Am. J. Med. 2016;129(1):115.e9-115.e16.
  • 35. Bito T, Misaki T, Yabuta Y, Ishikawa T, Kawano T, Watanabe F. Vitamin B 12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biol. 2017;11:21–29.
  • 36. Misra UK, Kalita J, Singh SK, Rahi SK. Oxidative Stress Markers in Vitamin B12 Deficiency. Mol. Neurobiol. 2017;54(2):1278–1284.
  • 37. Aşkar TK, olga Büyükleblebici, Hismioğulları A, Hünkerler Z. Oxidative Stress, Hepcidin and Nesfatin-I Status in Childhood Iron and Vitamin B12 Deficiency Anemias. Adv. Clin. Exp. Med. 2017;26(4):621–625.
  • 38. Bertoglio K, Jill James S, Deprey L, Brule N, Hendren RL. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J. Altern. Complement. Med. 2010;16(5):555–560.
  • 39. Hendren RL, James SJ, Widjaja F, Lawton B, Rosenblatt A, Bent S. Randomized, placebo-controlled trial of methyl B12 for children with autism. J. Child Adolesc. Psychopharmacol. 2016;26(9):774–783.
  • 40. Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J. Inherit. Metab. Dis. 2019;42(4):686–705.
  • 41. Mukherjee AK, Manna SK, Roy SK, Chakraborty M, Das S, Naskar JP. Plasma-aminothiols status and inverse correlation of total homocysteine with B-vitamins in arsenic exposed population of West Bengal, India. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 2016;51(11):962–973.
  • 42. Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res. Rev. 2020;64:101194.
  • 43. Morimoto M, Hashimoto T, Tsuda Y, Kitaoka T, Kyotani S. Evaluation of oxidative stress and antioxidant capacity in healthy children. J. Chinese Med. Assoc. 2019;82(8):651–654.
  • 44. Öktem A, Zenciroğlu A, Özyazıcı A, Bidev D, Özçelik E, Dilli D, vd. Yenidoğan Dönemi Pnömoni Vakalarında Dinamik Tiyol/Disülfit Dengesi. Turkish J. Pediatr. Dis. 2021;15(1):1–6.
  • 45. Al-Daghri NM, Rahman S, Sabico S, Yakout S, Wani K, Al-Attas OS, vd. Association of vitamin B12 with pro-inflammatory cytokines and biochemical markers related to cardiometabolic risk in Saudi subjects. Nutrients 2016;8(9). doi:10.3390/nu8090460.

Thiol disulfide balance in children with vitamin B12 deficiency

Year 2021, Volume: 46 Issue: 3, 1278 - 1284, 30.09.2021
https://doi.org/10.17826/cumj.909342

Abstract

Purpose: The aim of this study was to investigate the thiol/disulfide balance as a marker of oxidative stress in children with vitamin B12 deficiency.
Materials and Methods: Sixty one pediatric patient with vitamin B12 deficiency and 62 healthy children as a control group was included in the study. Vitamin B12, homocysteine, complete blood count, and thiol/disulfide balance parameters of the participants were measured. The relationship between thiol/disulfide balance parameters and vitamin B12 and homocysteine was investigated.
Results: The groups were similar in terms of age and gender distribution. Median vitamin B12 level was 179 (98-199) pg/ml in the patient group and 298 (201-965) pg/ml in the control group. Median homocysteine level was 11.2 (0.08-64.3) µmol/L in the patient group and 12 (4.5-26.6) µmol/L in the control group. Median values of homocysteine levels were within the normal range in both groups. Between the patient and control groups; no significant difference was found in terms of homocysteine, native thiol, total thiol, disulfide, disulfide/native thiol ratio, disulfide/total thiol ratio and native thiol/total thiol ratio. There was no significant correlation between thiol/disulfide balance parameters and vitamin B12 and homocysteine levels in the patient and control groups.
Conclusion: There was no significant increase in homocysteine level, since the vitamin B12 level was not significantly low in our patient group. It can be predicted that a vitamin B12 deficiency that does not increase homocysteine will not increase oxidative stress and therefore will not increase antioxidant capacity.

Project Number

2019-6-26-01

References

  • 1. Green R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 2017;129(19):2603–2611.
  • 2. Honzik T, Adamovicova M, Smolka V, Magner M, Hruba E, Zeman J. Clinical presentation and metabolic consequences in 40 breastfed infants with nutritional vitamin B12 deficiency - What have we learned? Eur. J. Paediatr. Neurol. 2010;14(6):488–495.
  • 3. Devalia V, Hamilton MS, Molloy AM. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. Br. J. Haematol. 2014;166(4):496–513.
  • 4. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74.
  • 5. van de Lagemaat E, de Groot L, van den Heuvel E. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients 2019;11(2):482.
  • 6. Moreira ES, Brasch NE, Yun J. Vitamin B12 protects against superoxide-induced cell injury in human aortic endothelial cells. Free Radic. Biol. Med. 2011;51(4):876–883.
  • 7. Chan W, Almasieh M, Catrinescu MM, Levin LA. Cobalamin-Associated Superoxide Scavenging in Neuronal Cells Is a Potential Mechanism for Vitamin B12–Deprivation Optic Neuropathy. Am. J. Pathol. 2018;188(1):160–172.
  • 8. Karamshetty V, Acharya JD, Ghaskadbi S, Goel P. Mathematical modeling of glutathione status in type 2 diabetics with vitamin B 12 deficiency. Front. Cell Dev. Biol. 2016;4(MAR). doi:10.3389/fcell.2016.00016.
  • 9. Green R, Allen LH, Bjørke-Monsen AL, Brito A, Guéant JL, Miller JW, vd. Vitamin B12 deficiency. Nat. Rev. Dis. Prim. 2017;3. doi:10.1038/nrdp.2017.40.
  • 10. Tyagi N, Sedoris KC, Steed M, Ovechkin A V., Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. - Hear. Circ. Physiol. 2005;289(6 58-6). doi:10.1152/ajpheart.00548.2005.
  • 11. Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Içinde: American Journal of Clinical Nutrition.Vol 72. American Society for Nutrition; 2000. doi:10.1093/ajcn/72.2.653s.
  • 12. Turell L, Radi R, Alvarez B. The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic. Biol. Med. 2013;65:244–253.
  • 13. Jones DP, Liang Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med. 2009;47(10):1329–1338.
  • 14. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: Emerging roles in cell signaling. Biochem. Pharmacol. 2006;71(5):551–564.
  • 15. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem. 2014;47(18):326–332.
  • 16. Erenler AK, Yardan T. Clinical utility of thiol/disulfide homeostasis. Clin. Lab. 2017;63(5–6):867–870.
  • 17. Ozler S, Oztas E, Tokmak A, Ergin M, Isci E, Eren F, vd. The association of thiol/disulphide homeostasis and lipid accumulation index with cardiovascular risk factors in overweight adolescents with polycystic ovary syndrome. Clin. Endocrinol. (Oxf). 2016;84(4):516–523.
  • 18. Kara SS, Erel O, Demirdag TB, Cura Yayla BC, Gulhan B, Neselioglu S, vd. Alteration of thiol-disulphide homeostasis in acute tonsillopharyngitis. Redox Rep. 2017;22(5):205–209.
  • 19. Elmas B, Karacan M, Dervişoğlu P, Kösecik M, İşgüven ŞP, Bal C. Dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in obese children and its relationship with inflammatory-cardiovascular markers. Anatol. J. Cardiol. 2017;18(5):361–369.
  • 20. Uysal P, Avcil S, Neşelioğlu S, Biçer C, Çatal F. Association of oxidative stress and dynamic thiol-disulphide homeostasis with atopic dermatitis severity and chronicity in children: a prospective study. Clin. Exp. Dermatol. 2018;43(2):124–130.
  • 21. Halil H, Tuygun N, Aksoy E, Erel O, Karacan CD. Serum Thiol-Disulphide Levels in Epileptic Pediatric Patients. Comb. Chem. High Throughput Screen. 2019;22(1):65–68.
  • 22. Uçaktürk SA, Allşlk M, Uǧur Ç, Elmaoǧullarl S, Mengen E, Erel Ö. Dynamic Thiol/Disulphide Homeostasis in Children and Adolescents with Non-Autoimmune Subclinical Hypothyroidism. Med. Princ. Pract. 2018;27(1):44–48.
  • 23. Zubarioglu T, Kiykim E, Cansever MS, Neselioglu S, Aktuglu-Zeybek C, Erel O. Evaluation of dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in maple syrup urine disease patients under treatment. Metab. Brain Dis. 2017;32(1):179–184.
  • 24. Çakıcı EK, Eroğlu FK, Yazılıtaş F, Bülbül M, Gür G, Aydoğ Ö, vd. Evaluation of the level of dynamic thiol/disulphide homeostasis in adolescent patients with newly diagnosed primary hypertension. Pediatr. Nephrol. 2018;33(5):847–853.
  • 25. Giden R, Gökdemir MT, Erel Ö, Büyükaslan H, Karabaǧ H. The relationship between serum Thiol levels and thiol/disulfide homeostasis with head trauma in children. Clin. Lab. 2018;64(1–2):163–168.
  • 26. Altinel Acoglu E, Erel O, Yazilitas F, Bulbul M, Oguz MM, Yucel H, vd. Changes in thiol/disulfide homeostasis in juvenile idiopathic arthritis. Pediatr. Int. 2018;60(6):593–596.
  • 27. Kurt ANC, Demir H, Aydin A, Erel Ö. Dynamic thiol/disulphide homeostasis in children with febrile seizure. Seizure 2018;59:34–37.
  • 28. Ayar G, Sahin S, Yazici MU, Neselioglu S, Erel O, Bayrakci US. Effects of Hemodialysis on Thiol-Disulphide Homeostasis in Critically Ill Pediatric Patients with Acute Kidney Injury. Biomed Res. Int. 2018;2018. doi:10.1155/2018/1898671.
  • 29. Yazılıtaş F, Oztek-Celebi FZ, Erel Ö, Çakıcı EK, Alışık M, Bülbül M. Dynamic Thiol/Disulphide Homeostasis in Children with Nephrotic Syndrome. Nephron 2019;142(1):17–25.
  • 30. Kaman A, Aydın Teke T, Gayretli Aydın ZG, Karacan Küçükali G, Neşelioğlu S, Erel Ö, vd. Dynamic thiol/disulphide homeostasis and pathogenesis of Kawasaki disease. Pediatr. Int. 2019;61(9):913–918.
  • 31. Ayar G, Sahin S, Atmaca YM, Yazici MU, Neselioglu S, Erelc O. Thiol-disulphide homeostasis is an oxidative stress indicator in critically ill children with sepsis. Arch. Argent. Pediatr. 2019;117(3):143–148.
  • 32. Solomon LR. Functional cobalamin (vitamin B12) deficiency: Role of advanced age and disorders associated with increased oxidative stress. Eur. J. Clin. Nutr. 2015;69(6):687–692.
  • 33. Ghosh S, Sinha JK, Putcha UK, Raghunath M. Severe but not Moderate Vitamin B12 Deficiency impairs lipid Profile, induces adiposity, and leads to adverse gestational Outcome in Female c57Bl/6 Mice. Front Nutr 2016;3:22.
  • 34. Solomon LR. Low Cobalamin Levels as Predictors of Cobalamin Deficiency: Importance of Comorbidities Associated with Increased Oxidative Stress. Am. J. Med. 2016;129(1):115.e9-115.e16.
  • 35. Bito T, Misaki T, Yabuta Y, Ishikawa T, Kawano T, Watanabe F. Vitamin B 12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biol. 2017;11:21–29.
  • 36. Misra UK, Kalita J, Singh SK, Rahi SK. Oxidative Stress Markers in Vitamin B12 Deficiency. Mol. Neurobiol. 2017;54(2):1278–1284.
  • 37. Aşkar TK, olga Büyükleblebici, Hismioğulları A, Hünkerler Z. Oxidative Stress, Hepcidin and Nesfatin-I Status in Childhood Iron and Vitamin B12 Deficiency Anemias. Adv. Clin. Exp. Med. 2017;26(4):621–625.
  • 38. Bertoglio K, Jill James S, Deprey L, Brule N, Hendren RL. Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. J. Altern. Complement. Med. 2010;16(5):555–560.
  • 39. Hendren RL, James SJ, Widjaja F, Lawton B, Rosenblatt A, Bent S. Randomized, placebo-controlled trial of methyl B12 for children with autism. J. Child Adolesc. Psychopharmacol. 2016;26(9):774–783.
  • 40. Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J. Inherit. Metab. Dis. 2019;42(4):686–705.
  • 41. Mukherjee AK, Manna SK, Roy SK, Chakraborty M, Das S, Naskar JP. Plasma-aminothiols status and inverse correlation of total homocysteine with B-vitamins in arsenic exposed population of West Bengal, India. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 2016;51(11):962–973.
  • 42. Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res. Rev. 2020;64:101194.
  • 43. Morimoto M, Hashimoto T, Tsuda Y, Kitaoka T, Kyotani S. Evaluation of oxidative stress and antioxidant capacity in healthy children. J. Chinese Med. Assoc. 2019;82(8):651–654.
  • 44. Öktem A, Zenciroğlu A, Özyazıcı A, Bidev D, Özçelik E, Dilli D, vd. Yenidoğan Dönemi Pnömoni Vakalarında Dinamik Tiyol/Disülfit Dengesi. Turkish J. Pediatr. Dis. 2021;15(1):1–6.
  • 45. Al-Daghri NM, Rahman S, Sabico S, Yakout S, Wani K, Al-Attas OS, vd. Association of vitamin B12 with pro-inflammatory cytokines and biochemical markers related to cardiometabolic risk in Saudi subjects. Nutrients 2016;8(9). doi:10.3390/nu8090460.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research
Authors

Ece Cansu Okur This is me 0000-0003-0297-9788

Mehmet Fatih Orhan 0000-0001-8081-6760

Bahri Elmas 0000-0001-9034-6109

Project Number 2019-6-26-01
Publication Date September 30, 2021
Acceptance Date July 12, 2021
Published in Issue Year 2021 Volume: 46 Issue: 3

Cite

MLA Okur, Ece Cansu et al. “Vitamin B12 eksikliği Olan çocuklarda Tiyol disülfit Dengesi”. Cukurova Medical Journal, vol. 46, no. 3, 2021, pp. 1278-84, doi:10.17826/cumj.909342.