Research Article
BibTex RIS Cite

Akciğer kanserinde tedaviye cevap belirlenmesinde difüzyon ağırlıklı görüntülemenin (DAG) ve görünür difüzyon katsayısı (ADC) ölçümlerinin katkısı

Year 2023, Volume: 48 Issue: 1, 187 - 193, 31.03.2023
https://doi.org/10.17826/cumj.1218117

Abstract

Amaç: Bu çalışmada evre III-IV akciğer kanserinde kemoterapiye tümör yanıtının değerlendirilmesinde difüzyon ağırlıklı görüntülemenin (DAG) rolünü değerlendirmektir.
Gereç ve Yöntem: Evre III-IV akciğer kanseri tanılı 32 hastaya 3 kür kemoterapi öncesi ve sonrası 3T MRG ile toraks MRG ve DAG uygulandı. DAG, tek atımlık bir eko-düzlemsel dizi kullanılarak 50, 400 ve 800 s/mm'lik bir b faktörü ile elde edildi. Kemoterapi öncesi ve sonrası histopatolojik tipler, regresyon ve progresyon grupları temelinde ortalama görünür difüzyon katsayısı (mADC) değerleri ölçülerek istatistiksel olarak karşılaştırıldı.
Bulgular: 32 olgudan 7'si (%18,5) progresyon grubunda (PG), 25'i (%81,5) regresyon grubunda (RG) yer aldı. PG'deki mADC, kemoterapiden önce 1,06±0,43 x 10ˉ³ ve kemoterapiden sonra 0,85±0,24 x 10ˉ³ ölçüldü. RG'deki mADC, kemoterapiden önce 0,92±0,27 x 10ˉ³ ve kemoterapiden sonra 1,20±0,26 x 10ˉ³ ölçüldü. Kemoterapi öncesi ve sonrası PG ve RG’de mADC değerleri arasında istatistiksel olarak anlamlı fark vardı. PG'de küçük hücreli akciğer kanseri (KHAK) tümör tipinde, kemoterapi öncesi ve sonrası mADC değerlerinde istatistiksel olarak anlamlı fark yoktu. RG'de KHAK ve küçük hücreli dışı akciğer kanseri (KHDAK) tümör tiplerinde ve PG'de KHDAK tümör tipinde kemoterapi öncesi ve sonrası mADC değerlerinde istatistiksel olarak anlamlı fark vardı.
Sonuç: Malign akciğer tümörlerinde DAG ve ADC ölçümleri tedaviye yanıtı değerlendirmede kullanılabilir.

References

  • Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228-47.
  • Watanabe H, Kunitoh H, Yamamoto S, Kawasaki S, Inoue A, Hotta K et al. Effect of the introduction of minimum lesion size on interobserver reproducibility using RECIST guidelines in non-small cell lung cancer patients. Cancer Sci. 2006;97:214-8.
  • de Geus-Oei LF, van der Heijden HF, Visser EP, Hermsen R, van Hoorn BA, Timmer-Bonte JN et al. Chemotherapy response evaluation with 18FFDG PET in patients with non-small cell lung cancer. J Nucl Med. 2007;48:1592-8.
  • Wang J, Wu N, Cham MD, Song Y. Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol. 2009;193:1090-6.
  • Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M et al. MRI of the lung (2/3). Why … when … how?. Insights Imaging. 2012;3:355-71.
  • Uto T, Takehara Y, Nakamura Y, Naito T, Hashimoto D, Inui N, Suda T, Nakamura H, Chida K. Higher sensitivity and specificity for diffusion-weighted imaging of malignant lung lesions without apparent diffusion coefficient quantification. Radiology. 2009;252:247-54.
  • Kurihara Y, Matsuoka S, Yamashiro T, Fujikawa A, Matsushita S, Yagihashi K et al. MRI of pulmonary nodules. AJR Am J Roentgenol. 2014;202:210-6.
  • Satoh S, Kitazume Y, Ohdama S, Kimula Y, Taura S, Endo Y. Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roentgenol. 2008;191:464-70.
  • Chang Q, Wu N, Ouyang H, Huang Y. Diffusion-weighted magnetic resonance imaging of lung cancer at 3.0 T: a preliminary study on monitoring diffusion changes during chemoradiation therapy. Clin Imaging. 2012;36:98-103.
  • Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, Sakuma T. Lung carcinoma: diffusion-weighted mr imaging--preliminary evaluation with apparent diffusion coefficient. Radiology. 2007;243:570-7.
  • Weiss E, Ford JC, Olsen KM, Karki K, Saraiya S, Groves R et al. Apparent diffusion coefficient (ADC) change on repeated diffusion-weighted magnetic resonance imaging during radiochemotherapy for non-small cell lung cancer: A pilot study. Lung Cancer. 2016;96:113-9.
  • Usuda K, Zhao XT, Sagawa M, Aikawa H, Ueno M, Tanaka M, Machida Y, Matoba M, Ueda Y, Sakuma T. Diffusion-weighted imaging (DWI) signal intensity and distribution represent the amount of cancer cells and their distribution in primary lung cancer. Clin Imaging. 2013;37:265-72.
  • Hein PA, Kremser C, Judmaier W, Griebel J, Pfeiffer KP, Kreczy A et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol. 2003;5:214-22.
  • King AD, Mo FK, Yu KH, Yeung DK, Zhou H, Bhatia KS et al. Squamous cell carcinoma of the head and neck: diffusion-weighted MR imaging for prediction and monitoring of treatment response. Eur Radiol. 2010;20:2213-20.
  • Kim S, Loevner L, Quon H, Sherman E, Weinstein G, Kilger A et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15:986-94.
  • Bains LJ, Zweifel M, Thoeny HC. Therapy response with diffusion MRI: an update. Cancer Imaging. 2012;12:395-402.
  • Yabuuchi H, Hatakenaka M, Takayama K, Matsuo Y, Sunami S, Kamitani T et al. Non-small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion-weighted MR imaging. Radiology. 2011;261:598-604.
  • Xu HD, Zhang YQ, Shen WY, Mao ZC. Diffusion-weighted imaging in evaluating the efficacy of concurrent chemoradiotherapy in the treatment of non-small cell lung cancer. Tumori. 2018;104:188-94.
  • Tsuchida T, Morikawa M, Demura Y, Umeda Y, Okazawa H, Kimura H. Imaging the early response to chemotherapy in advanced lung cancer with diffusion-weighted magnetic resonance imaging compared to fluorine-18 fluorodeoxyglucose positron emission tomography and computed tomography. J Magn Reson Imaging. 2013;38:80-8.

Contribution of diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) measurements in determining response to treatment in lung cancer

Year 2023, Volume: 48 Issue: 1, 187 - 193, 31.03.2023
https://doi.org/10.17826/cumj.1218117

Abstract

Purpose: The purpose of this study was to evaluate the role of diffusion-weighted imaging (DWI) in evaluating tumor response to chemotherapy in stage III-IV lung cancer.
Materials and Methods: Chest and DWI were performed with 3T MRI before and after 3 courses of chemotherapy on 32 patients diagnosed with stage III-IV lung cancer. DWI were acquired with a b factor of 50, 400 and 800 s/mm using a single-shot echo-planar sequence. Histopathological types before and after chemotherapy were compared by measuring mean apparent diffusion coefficient (mADC) values on the basis of regression and progression groups.
Results: 32 cases, 7 (18.5%) were in the progression group (PG), and 25 (81.5%) were in the regression group (RG). mADC in the PG was 1.06±0.43 x 10ˉ³ before chemotherapy and 0.85±0.24 x 10ˉ³ after chemotherapy. mADC in the RG was 0.92±0.27 x 10ˉ³ before chemotherapy and 1.20±0.26 x 10ˉ³ after chemotherapy. There was a statistically significant difference between the mADC values in the PG and RG before and after chemotherapy. There was no statistically significant difference in mADC values before and after chemotherapy in small cell lung cancer (SCLC) tumor type in the PG . There was a statistically significant difference in mADC values before and after chemotherapy in SCLC and non-small cell lung cancer (NSCLC) tumor types in the RG and NSCLC tumor type in the PG
Conclusion: DWI and ADC measurements can be used in assessing response to treatment in malignant pulmonary tumors.

References

  • Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228-47.
  • Watanabe H, Kunitoh H, Yamamoto S, Kawasaki S, Inoue A, Hotta K et al. Effect of the introduction of minimum lesion size on interobserver reproducibility using RECIST guidelines in non-small cell lung cancer patients. Cancer Sci. 2006;97:214-8.
  • de Geus-Oei LF, van der Heijden HF, Visser EP, Hermsen R, van Hoorn BA, Timmer-Bonte JN et al. Chemotherapy response evaluation with 18FFDG PET in patients with non-small cell lung cancer. J Nucl Med. 2007;48:1592-8.
  • Wang J, Wu N, Cham MD, Song Y. Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol. 2009;193:1090-6.
  • Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M et al. MRI of the lung (2/3). Why … when … how?. Insights Imaging. 2012;3:355-71.
  • Uto T, Takehara Y, Nakamura Y, Naito T, Hashimoto D, Inui N, Suda T, Nakamura H, Chida K. Higher sensitivity and specificity for diffusion-weighted imaging of malignant lung lesions without apparent diffusion coefficient quantification. Radiology. 2009;252:247-54.
  • Kurihara Y, Matsuoka S, Yamashiro T, Fujikawa A, Matsushita S, Yagihashi K et al. MRI of pulmonary nodules. AJR Am J Roentgenol. 2014;202:210-6.
  • Satoh S, Kitazume Y, Ohdama S, Kimula Y, Taura S, Endo Y. Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roentgenol. 2008;191:464-70.
  • Chang Q, Wu N, Ouyang H, Huang Y. Diffusion-weighted magnetic resonance imaging of lung cancer at 3.0 T: a preliminary study on monitoring diffusion changes during chemoradiation therapy. Clin Imaging. 2012;36:98-103.
  • Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, Sakuma T. Lung carcinoma: diffusion-weighted mr imaging--preliminary evaluation with apparent diffusion coefficient. Radiology. 2007;243:570-7.
  • Weiss E, Ford JC, Olsen KM, Karki K, Saraiya S, Groves R et al. Apparent diffusion coefficient (ADC) change on repeated diffusion-weighted magnetic resonance imaging during radiochemotherapy for non-small cell lung cancer: A pilot study. Lung Cancer. 2016;96:113-9.
  • Usuda K, Zhao XT, Sagawa M, Aikawa H, Ueno M, Tanaka M, Machida Y, Matoba M, Ueda Y, Sakuma T. Diffusion-weighted imaging (DWI) signal intensity and distribution represent the amount of cancer cells and their distribution in primary lung cancer. Clin Imaging. 2013;37:265-72.
  • Hein PA, Kremser C, Judmaier W, Griebel J, Pfeiffer KP, Kreczy A et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol. 2003;5:214-22.
  • King AD, Mo FK, Yu KH, Yeung DK, Zhou H, Bhatia KS et al. Squamous cell carcinoma of the head and neck: diffusion-weighted MR imaging for prediction and monitoring of treatment response. Eur Radiol. 2010;20:2213-20.
  • Kim S, Loevner L, Quon H, Sherman E, Weinstein G, Kilger A et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15:986-94.
  • Bains LJ, Zweifel M, Thoeny HC. Therapy response with diffusion MRI: an update. Cancer Imaging. 2012;12:395-402.
  • Yabuuchi H, Hatakenaka M, Takayama K, Matsuo Y, Sunami S, Kamitani T et al. Non-small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion-weighted MR imaging. Radiology. 2011;261:598-604.
  • Xu HD, Zhang YQ, Shen WY, Mao ZC. Diffusion-weighted imaging in evaluating the efficacy of concurrent chemoradiotherapy in the treatment of non-small cell lung cancer. Tumori. 2018;104:188-94.
  • Tsuchida T, Morikawa M, Demura Y, Umeda Y, Okazawa H, Kimura H. Imaging the early response to chemotherapy in advanced lung cancer with diffusion-weighted magnetic resonance imaging compared to fluorine-18 fluorodeoxyglucose positron emission tomography and computed tomography. J Magn Reson Imaging. 2013;38:80-8.
There are 19 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research
Authors

Eser Bulut 0000-0002-6765-6552

Polat Koşucu 0000-0002-8381-7600

Tevfik Ozlu 0000-0003-4881-3097

Muge Kosucu 0000-0003-3879-3045

Halil Kavgacı 0000-0003-2511-2589

İsmet Miraç Çakır 0000-0002-4229-7493

Arzu Coskuner Bulut 0000-0003-2164-5353

Publication Date March 31, 2023
Acceptance Date February 5, 2023
Published in Issue Year 2023 Volume: 48 Issue: 1

Cite

MLA Bulut, Eser et al. “Contribution of Diffusion-Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) Measurements in Determining Response to Treatment in Lung Cancer”. Cukurova Medical Journal, vol. 48, no. 1, 2023, pp. 187-93, doi:10.17826/cumj.1218117.