Araştırma Makalesi
BibTex RIS Kaynak Göster

Tip-2 diyabetli hastalarda NFKB1 polimorfizmleri ile telomer uzunluğu ve apoptoz arasındaki ilişkinin araştırılması

Yıl 2023, Cilt: 48 Sayı: 1, 216 - 226, 31.03.2023
https://doi.org/10.17826/cumj.1238482

Öz

Amaç: Tip 2 diabetes mellitus (T2DM), dünya nüfusunun büyük bir bölümünü etkileyen kronik, metabolik ve heterojen bir hastalıktır. Bu çalışma, T2DM'li hastalarda NFKB1 -94 ATTG ins/del polimorfizmlerinin, apoptoz genlerinin ekspresyonu ve telomer uzunluğunu (TU) sağlıklı bireylerle karşılaştırmalı olarak değerlendirmeyi amaçladı.
Gereç ve Yöntem: Çalışmaya 69 T2DM hastası ve 60 sağlıklı kişi dahil edildi. Kan örneklerinden DNA ve RNA izole edildi. NFKB1 genotipleri, Sanger sekansı ile tanımlandı. TU analizleri için ve kaspaz-3, kaspaz-9, bax ve bcl2 genlerinin ekspresyonunu araştırmak için RT-PCR kullanıldı.
Bulgular: NFKB1 -94 ins/del genotipli hastalar ile kontrol grubu arasında anlamlı bir fark vardı (OR:0,4792 (0,2345-1,011)). Bununla birlikte, diğer genotip/alellerin (ins/ins ve del/del) dağılımı, T2DM ve kontrol grupları arasında fark göstermedi. NFKB1-94 ins/del'in alelik frekansı T2DM grubu için 0,455/0,235 ve kontrol grubu için 0,435/0,165’idi. T2DM grubunda kaspaz-3, kaspaz-9 ve Bax genlerinin mRNA ekspresyonunda sağlıklı gruba göre artış gözlenirken, T2DM grubunda Bcl2 geninde azalma saptandı. T2DM hastalarında TU, sağlıklı bireylerden daha kısaydı.
Sonuç: NFKB1 -94 ins/del polimorfizmleri, T2DM hastalarında anlamlı farklılık göstermektedir. T2DM'li hastalarda apoptozun aktive olduğunu ve TU'nun kısaldığını gözlemledik. Ancak NFKB1 polimorfizmleri ile apoptoz ve TU arasında ilişki saptanamadı.

Destekleyen Kurum

Bayburt Üniversitesi Bilimsel Araştırma Proje Koordinatörlüğü tarafından desteklenmiştir.

Proje Numarası

BAU-BAP- No: 2021/69001-01-10

Kaynakça

  • Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health. 2019;10:107.
  • Schmidt AM. Highlighting diabetes mellitus: the epidemic continues. Arterioscler Thromb Vasc Biol. 2018;38:e1-8.
  • Susan van D, Beulens JWJ, Yvonne T. van der S, Grobbee DE, Nealb B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17 (Suppl 1):S3-8.
  • Walker CG, Solis-Trapala I, Holzapfel C, Ambrosini GL, Fuller NR, Loos RJF et al. Modelling the interplay between lifestyle factors and genetic predisposition on markers of type 2 diabetes mellitus risk. PLoS One 2015;10:e0131681.
  • Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579-89.
  • Indira M, Abhilash PA. Role of NF-Kappa B (NF-κB) in diabetes. For Immunopathol Dis Therap. 2013;4:111-32.
  • Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012;22:557-66.
  • Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132:344-62.
  • Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans. Circulation. 2002;106:2067-72.
  • Gautam A, Gupta S, Mehndiratta M, Sharma M, Singh K, Kalra OP et al. Association of NFKB1 gene polymorphism (rs28362491) with levels of inflammatory biomarkers and susceptibility to diabetic nephropathy in Asian Indians. World J Diabetes. 2017;8:66.
  • Karban AS, Okazaki T, Panhuysen CIM, Gallegos T, Potter JJ, Bailey-Wilson JE et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet. 2004;13:35-45.
  • Senol Tuncay S, Okyay P, Bardakci F. Identification of NF-κB1 and NF-κBIΑ polymorphisms using PCR–RFLP assay in a turkish population. Biochem Genet. 2010;48:104-12.
  • Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Telomere length dynamics in vascular disease: a review. Eur J Vasc Endovasc Surg. 2010;40:17-26.
  • Han J, Qureshi AA, Prescott J, Guo Q, Ye L, Hunter DJ et al. A Prospective study of telomere length and the risk of skin cancer. J Invest Dermatol. 2009;129:415-21.
  • Weischer M, Bojesen SE, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A, Nordestgaard BG. Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler Thromb Vasc Biol. 2012;32:822-29.
  • Blackburn EH. Structure and function of telomeres. Nature. 1991;350:569-73.
  • Révész D, Milaneschi Y, Verhoeven JE, Penninx BWJH. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J Clin Endocrinol Metab. 2014;99:4607-15.
  • Willeit P, Raschenberger J, Heydon EE, Tsimikas S, Haun M, Mayr A et al. Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS One. 2014;9:e112483.
  • Wiweko B, Indra I, Susanto C, Natadisastra M, Hestiantoro A. The correlation between serum AMH and HOMA-IR among PCOS phenotypes. BMC Res Notes. 2018;11:114.
  • Gutin I. In BMI we trust: reframing the body mass index as a measure of health. Soc. Theory Heal. 2018;16:256-71.
  • Dirican E, Savrun ŞT, Aydın İE, Gülbay G, Karaman Ü. Analysis of mitochondrial DNA cytochrome‐b ( CYB ) and ATPase‐6 gene mutations in COVID‐19 patients. J Med Virol. 2022;94:3138-46.
  • Oner T, Arslan C, Yenmis G, Arapi B, Tel C, Aydemir B et al. Association of NFKB1A and microRNAs variations and the susceptibility to atherosclerosis. J Genet. 2017;96:251-59.
  • Dirican E, Özcan H, Uzuncakmak Karabulut S, Takim U. Evaluation expression of the caspase-3 and caspase-9 apoptotic genes in schizophrenia patients. Clin Psychopharmacol Neurosci. 2023;21:171-8.
  • Del Puerto HL, Martins AS, Moro L, Milsted A, Alves F, Braz GF et al. Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus. Genet Mol Res. 2010;9:151-61.
  • Lin D, Wang L, Yan Z, Ye J, Hu A, Liao H et al. Semi-synthesis, structural modification and biological evaluation of 5-arylbenzofuran neolignans. RSC Adv. 2018;8:34331-42.
  • Dirican E, Velidedeoğlu M, Ilvan S, Öztürk T, Altıntas T, Aynı EB et al. Identification of PIK3CA aberrations associated with telomere length in breast cancer. Gene Rep. 2020;19:100597.
  • Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:47e-47.
  • Coto E, Díaz-Corte C, Tranche S, Gómez J, Alonso B, Iglesias S et al. Gene variants in the NF-KB pathway (NFKB1, NFKBIA, NFKBIZ) and their association with type 2 diabetes and impaired renal function. Hum Immunol. 2018;79:494-98.
  • Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol. 2004;1:343-50.
  • Rai S, Badarinath ARS, George A, Sitaraman S, Bronson SC, Anandt S et al. Association of telomere length with diabetes mellitus and idiopathic dilated cardiomyopathy in a South Indian population: A pilot study. Mutat Res Toxicol Environ Mutagen. 2022;874-875: 503439.
  • Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci. 2016;16:162-79.
  • Sozen S, Horozoglu C, Bireller ES, Karaali Z, Cakmakoglu B. Association of SUMO4 M55V and -94ins/del gene variants with type-2 diabetes. In Vivo. 2014;28:919-23.
  • Lee H-C, Wei Y-H. Mitochondrial role in life and death of the cell. J Biomed Sci. 2000;7:2-15.
  • Lindenboim L, Grozki D, Amsalem-Zafran AR, Peña-Blanco A, Gundersen GG, Borner C et al. Apoptotic stress induces Bax-dependent, caspase-independent redistribution of LINC complex nesprins. Cell Death Discov. 2020;6:90.
  • Bruni A, Bornstein S, Linkermann A, Shapiro AMJ. Regulated cell death seen through the lens of islet transplantation. Cell Transplant. 2018;27:890-901.
  • Kilanowska A, Ziółkowska A. Apoptosis in type 2 diabetes: can it be prevented? hippo pathway prospects. Int J Mol Sci. 2022;23:636.
  • Popgeorgiev N, Jabbour L, Gillet G. Subcellular Localization and dynamics of the bcl-2 family of proteins. Front Cell Dev Biol. 2018;6:13.
  • Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175-93.
  • Miani M, Elvira B, Gurzov EN. Sweet Killing in Obesity and Diabetes: The metabolic role of the bh3-only protein BIM. J Mol Biol. 2018;430:3041-50.
  • Morris JL, Gillet G, Prudent J, Popgeorgiev N. Bcl-2 family of proteins in the control of mitochondrial calcium signalling: an old chap with new roles. Int J Mol Sci. 2021;22:3730.
  • Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008; 9: 47-59.
  • Kosmider B, Wojcik I, Osiecka R, Bartkowiak J, Zyner E, Ochocki J et al. Enhanced P53 and BAX gene expression and apoptosis in A549 cells by cis-Pt(II) complex of 3-aminoflavone in comparison with cis-DDP. Invest New Drugs. 2005;23:287-97.
  • Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15:7-10.
  • Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A. 1996;93:2239-44.
  • Richmond A. NF-κB, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2002;2:664-74.
  • Khalangot M, Krasnienkov D, Vaiserman A. Telomere length in different metabolic categories: Clinical associations and modification potential. Exp Biol Med. 2020;245:1115-21
  • Sampson MJ, Hughes DA. Chromosomal telomere attrition as a mechanism for the increased risk of epithelial cancers and senescent phenotypes in type 2 diabetes. Diabetologia. 2006;49:1726-31.
  • Kim S, Parks CG, DeRoo LA, Chen H, Taylor JA, Cawthon RM, et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomarkers Prev. 2009;18:816-20
  • Aoki Y, Aoki M, Yamada K. Leukocyte telomere length and serum levels of high-molecular-weight adiponectin and dehydroepiandrosterone-sulfate could reflect distinct aspects of longevity in japanese centenarians. Gerontol Geriatr Med. 2017;3:233372141769667.
  • Piplani S, Alemao NN, Prabhu M, Ambar S, Chugh Y, Chugh SK. Correlation of the telomere length with type 2 diabetes mellitus in patients with ischemic heart disease. Indian Heart J. 2018;70:173-76.
  • Cheng F, Luk AO, Tam CHT, Fan B, Wu H, Yang A et al. Shortened relative leukocyte telomere length is associated with prevalent and incident cardiovascular complications in type 2 diabetes: analysis from the hong kong diabetes register. Diabetes Care. 2020;43:2257-65.

Investigation of the relationship between NFKB1 polymorphisms and telomere length and apoptosis in patients with type-2 diabetes

Yıl 2023, Cilt: 48 Sayı: 1, 216 - 226, 31.03.2023
https://doi.org/10.17826/cumj.1238482

Öz

Purpose: Type 2 diabetes mellitus (T2DM) is a heterogeneous, chronic, and metabolic disease that affects a significant proportion of the global population. This study aimed to evaluate the effect of NFKB1 -94 ATTG ins/del polymorphisms on the expression of apoptosis genes and telomere length (TL) in patients with T2DM compared with healthy individuals.
Materials and Methods: Sixty-nine T2DM patients and sixty healthy people were enrolled in the study. DNA and RNA were isolated from the blood samples. NFKB1 genotypes were identified by Sanger sequencing. For TL analyses and to investigate the expression of the caspase-3, caspase-9, bax, and bcl2 genes, RT-PCR was utilized.
Results: There was a significant difference between the NFKB1 -94 ins/del genotype patients and the control group (OR:0.4792 (0.2345-1.011)). However, the distribution of other genotype/alleles (ins/ins and del/del) showed no difference between T2DM and control groups. The allelic frequency of NFKB1 -94 ins/del was 0.455/0.235 for the T2DM group and 0.435/0.165 for the control group. An increase in the mRNA expression of caspase-3, caspase-9 and Bax genes was observed in the T2DM group compared with the healthy group, while a decrease in the Bcl2 gene was found in the T2DM group. TL in T2DM patients was shorter than in healthy individuals.
Conclusion: NFKB1 -94 ins/del polymorphisms show significant differences in T2DM patients. We observed that apoptosis was activated and TL was shortened in patients with T2DM. However, no relationship between NFKB1 polymorphisms and apoptosis and TL could not be determined.

Proje Numarası

BAU-BAP- No: 2021/69001-01-10

Kaynakça

  • Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health. 2019;10:107.
  • Schmidt AM. Highlighting diabetes mellitus: the epidemic continues. Arterioscler Thromb Vasc Biol. 2018;38:e1-8.
  • Susan van D, Beulens JWJ, Yvonne T. van der S, Grobbee DE, Nealb B. The global burden of diabetes and its complications: an emerging pandemic. Eur J Cardiovasc Prev Rehabil. 2010;17 (Suppl 1):S3-8.
  • Walker CG, Solis-Trapala I, Holzapfel C, Ambrosini GL, Fuller NR, Loos RJF et al. Modelling the interplay between lifestyle factors and genetic predisposition on markers of type 2 diabetes mellitus risk. PLoS One 2015;10:e0131681.
  • Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579-89.
  • Indira M, Abhilash PA. Role of NF-Kappa B (NF-κB) in diabetes. For Immunopathol Dis Therap. 2013;4:111-32.
  • Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012;22:557-66.
  • Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132:344-62.
  • Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans. Circulation. 2002;106:2067-72.
  • Gautam A, Gupta S, Mehndiratta M, Sharma M, Singh K, Kalra OP et al. Association of NFKB1 gene polymorphism (rs28362491) with levels of inflammatory biomarkers and susceptibility to diabetic nephropathy in Asian Indians. World J Diabetes. 2017;8:66.
  • Karban AS, Okazaki T, Panhuysen CIM, Gallegos T, Potter JJ, Bailey-Wilson JE et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet. 2004;13:35-45.
  • Senol Tuncay S, Okyay P, Bardakci F. Identification of NF-κB1 and NF-κBIΑ polymorphisms using PCR–RFLP assay in a turkish population. Biochem Genet. 2010;48:104-12.
  • Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Telomere length dynamics in vascular disease: a review. Eur J Vasc Endovasc Surg. 2010;40:17-26.
  • Han J, Qureshi AA, Prescott J, Guo Q, Ye L, Hunter DJ et al. A Prospective study of telomere length and the risk of skin cancer. J Invest Dermatol. 2009;129:415-21.
  • Weischer M, Bojesen SE, Cawthon RM, Freiberg JJ, Tybjærg-Hansen A, Nordestgaard BG. Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler Thromb Vasc Biol. 2012;32:822-29.
  • Blackburn EH. Structure and function of telomeres. Nature. 1991;350:569-73.
  • Révész D, Milaneschi Y, Verhoeven JE, Penninx BWJH. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J Clin Endocrinol Metab. 2014;99:4607-15.
  • Willeit P, Raschenberger J, Heydon EE, Tsimikas S, Haun M, Mayr A et al. Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS One. 2014;9:e112483.
  • Wiweko B, Indra I, Susanto C, Natadisastra M, Hestiantoro A. The correlation between serum AMH and HOMA-IR among PCOS phenotypes. BMC Res Notes. 2018;11:114.
  • Gutin I. In BMI we trust: reframing the body mass index as a measure of health. Soc. Theory Heal. 2018;16:256-71.
  • Dirican E, Savrun ŞT, Aydın İE, Gülbay G, Karaman Ü. Analysis of mitochondrial DNA cytochrome‐b ( CYB ) and ATPase‐6 gene mutations in COVID‐19 patients. J Med Virol. 2022;94:3138-46.
  • Oner T, Arslan C, Yenmis G, Arapi B, Tel C, Aydemir B et al. Association of NFKB1A and microRNAs variations and the susceptibility to atherosclerosis. J Genet. 2017;96:251-59.
  • Dirican E, Özcan H, Uzuncakmak Karabulut S, Takim U. Evaluation expression of the caspase-3 and caspase-9 apoptotic genes in schizophrenia patients. Clin Psychopharmacol Neurosci. 2023;21:171-8.
  • Del Puerto HL, Martins AS, Moro L, Milsted A, Alves F, Braz GF et al. Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus. Genet Mol Res. 2010;9:151-61.
  • Lin D, Wang L, Yan Z, Ye J, Hu A, Liao H et al. Semi-synthesis, structural modification and biological evaluation of 5-arylbenzofuran neolignans. RSC Adv. 2018;8:34331-42.
  • Dirican E, Velidedeoğlu M, Ilvan S, Öztürk T, Altıntas T, Aynı EB et al. Identification of PIK3CA aberrations associated with telomere length in breast cancer. Gene Rep. 2020;19:100597.
  • Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:47e-47.
  • Coto E, Díaz-Corte C, Tranche S, Gómez J, Alonso B, Iglesias S et al. Gene variants in the NF-KB pathway (NFKB1, NFKBIA, NFKBIZ) and their association with type 2 diabetes and impaired renal function. Hum Immunol. 2018;79:494-98.
  • Liang Y, Zhou Y, Shen P. NF-kappaB and its regulation on the immune system. Cell Mol Immunol. 2004;1:343-50.
  • Rai S, Badarinath ARS, George A, Sitaraman S, Bronson SC, Anandt S et al. Association of telomere length with diabetes mellitus and idiopathic dilated cardiomyopathy in a South Indian population: A pilot study. Mutat Res Toxicol Environ Mutagen. 2022;874-875: 503439.
  • Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci. 2016;16:162-79.
  • Sozen S, Horozoglu C, Bireller ES, Karaali Z, Cakmakoglu B. Association of SUMO4 M55V and -94ins/del gene variants with type-2 diabetes. In Vivo. 2014;28:919-23.
  • Lee H-C, Wei Y-H. Mitochondrial role in life and death of the cell. J Biomed Sci. 2000;7:2-15.
  • Lindenboim L, Grozki D, Amsalem-Zafran AR, Peña-Blanco A, Gundersen GG, Borner C et al. Apoptotic stress induces Bax-dependent, caspase-independent redistribution of LINC complex nesprins. Cell Death Discov. 2020;6:90.
  • Bruni A, Bornstein S, Linkermann A, Shapiro AMJ. Regulated cell death seen through the lens of islet transplantation. Cell Transplant. 2018;27:890-901.
  • Kilanowska A, Ziółkowska A. Apoptosis in type 2 diabetes: can it be prevented? hippo pathway prospects. Int J Mol Sci. 2022;23:636.
  • Popgeorgiev N, Jabbour L, Gillet G. Subcellular Localization and dynamics of the bcl-2 family of proteins. Front Cell Dev Biol. 2018;6:13.
  • Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175-93.
  • Miani M, Elvira B, Gurzov EN. Sweet Killing in Obesity and Diabetes: The metabolic role of the bh3-only protein BIM. J Mol Biol. 2018;430:3041-50.
  • Morris JL, Gillet G, Prudent J, Popgeorgiev N. Bcl-2 family of proteins in the control of mitochondrial calcium signalling: an old chap with new roles. Int J Mol Sci. 2021;22:3730.
  • Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008; 9: 47-59.
  • Kosmider B, Wojcik I, Osiecka R, Bartkowiak J, Zyner E, Ochocki J et al. Enhanced P53 and BAX gene expression and apoptosis in A549 cells by cis-Pt(II) complex of 3-aminoflavone in comparison with cis-DDP. Invest New Drugs. 2005;23:287-97.
  • Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15:7-10.
  • Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A. 1996;93:2239-44.
  • Richmond A. NF-κB, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2002;2:664-74.
  • Khalangot M, Krasnienkov D, Vaiserman A. Telomere length in different metabolic categories: Clinical associations and modification potential. Exp Biol Med. 2020;245:1115-21
  • Sampson MJ, Hughes DA. Chromosomal telomere attrition as a mechanism for the increased risk of epithelial cancers and senescent phenotypes in type 2 diabetes. Diabetologia. 2006;49:1726-31.
  • Kim S, Parks CG, DeRoo LA, Chen H, Taylor JA, Cawthon RM, et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomarkers Prev. 2009;18:816-20
  • Aoki Y, Aoki M, Yamada K. Leukocyte telomere length and serum levels of high-molecular-weight adiponectin and dehydroepiandrosterone-sulfate could reflect distinct aspects of longevity in japanese centenarians. Gerontol Geriatr Med. 2017;3:233372141769667.
  • Piplani S, Alemao NN, Prabhu M, Ambar S, Chugh Y, Chugh SK. Correlation of the telomere length with type 2 diabetes mellitus in patients with ischemic heart disease. Indian Heart J. 2018;70:173-76.
  • Cheng F, Luk AO, Tam CHT, Fan B, Wu H, Yang A et al. Shortened relative leukocyte telomere length is associated with prevalent and incident cardiovascular complications in type 2 diabetes: analysis from the hong kong diabetes register. Diabetes Care. 2020;43:2257-65.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Araştırma
Yazarlar

Ebubekir Dirican 0000-0001-9260-5223

Yasemin Kaya 0000-0001-7360-8090

Proje Numarası BAU-BAP- No: 2021/69001-01-10
Yayımlanma Tarihi 31 Mart 2023
Kabul Tarihi 27 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 48 Sayı: 1

Kaynak Göster

MLA Dirican, Ebubekir ve Yasemin Kaya. “Investigation of the Relationship Between NFKB1 Polymorphisms and Telomere Length and Apoptosis in Patients With Type-2 Diabetes”. Cukurova Medical Journal, c. 48, sy. 1, 2023, ss. 216-2, doi:10.17826/cumj.1238482.