Derleme
BibTex RIS Kaynak Göster

COVID-19 ve terapötik yaklaşımlardaki ilerleme: bir gözden geçirme

Yıl 2024, Cilt: 49 Sayı: 1, 204 - 223, 29.03.2024
https://doi.org/10.17826/cumj.1394329

Öz

Bilimsel olarak şiddetli akut solunum sendromu koronavirüs 2 (SARS-Cov-2) olarak bilinen koronavirüs hastalığı 2019 (COVID-19), insanların solunum sistemini olumsuz etkilemiş ve çoğu gelişmiş ülke ekonomisini fena halde ezmiştir. Bu çalışma, mevcut COVID-19 durumunu ve viral olmayan aşıları, etkinliğini, güvenliğini, denemelerini, dozaj protokollerini ve COVID-19 için oluşturulan toplu aşılamayı içeren terapötik yaklaşımları araştırmayı amaçlamaktadır. PubMed, Scopus, Google Scholar ve MEDLİNE veritabanları kullanılarak kapsamlı bir literatür taraması yapılmıştır. Araştırma makalelerinin başlığı önce gözden geçirildi, ardından özetler ve son olarak çalışmaların tamamı incelendi. Bu derleme eleştirel olarak COVID-19'un zararlı etkilerine ve mutasyonlarına, çoklu varyantlarına, farmakolojik yaklaşımlarına ve mRNA aşılarına odaklanmaktadır. COVID-19, farklı bir mutasyona ve değiştirilmiş genomik yapıya sahip, ortaya çıkan yeni bir varyanttır. COVID-19 ile mücadele etmek için şimdiye kadar farklı farmakolojik ve terapötik yaklaşımlar (interferon, oligonükleotitler, anti-viral ilaç molekülleri, antikor peptitleri) yapılmıştır. Tip I interferonların COVID-19 patogenezindeki rolü nedeniyle COVID-19 tedavi yaklaşımlarında interferonlar kullanılmaktadır. Bu terapötik metodolojilerin yanı sıra dünyanın dört bir yanından şirketler COVID-19 aşısı geliştirme çalışmasına katıldı. Aşılar, dünya tarihinde ilk kez kitlesel düzeyde insanları aşılamak için bir yıldan kısa bir sürede geliştirildi. Bu aşılar, başak proteinli zar proteinleri gibi virüsün yapısal bileşenlerini hedefler. Bu makale, COVID-19 ve terapötik yaklaşımlardaki ilerleme konusunda araştırmacılar için değerli bilgiler sunmaktadır. Bu makale, COVID-19 mutasyon mekanizmasını ve bu mutasyon noktalarıyla mücadele stratejilerini anlamak için bir ayırt edici özellik görevi görecektir.

Etik Beyan

Not appicable

Kaynakça

  • Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2021;54:159-63.
  • Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z et al. COVID-19 viral load in upper respiratory specimens of infected patients. NEJM. 2020;382:1177-9.
  • Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323:1061-9.
  • Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8:e488-e96.
  • Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12:135-40.
  • Lippi G, Plebani M. The critical role of laboratory medicine during Coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin Chem Lab Med. 2020;58:1063-69.
  • World Health Organization (WHO). COVID-19 epidemiological update. https://www.who.int/publications/m/item/COVID-19-epidemiological-update---22-december-2023 (Accessed 23.12.2023).
  • Bourouiba L. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA. 2020;323:1837-8.
  • To KKW, Tsang OTY, Yip CCY, Chan KH, Wu TC, Chan JMC et al. Consistent detection of 2019 novel Coronavirus in saliva. Clin Infect Dis. 2020;71:841-43.
  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. COVID-19 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-80.
  • Shervani Z, Khan I, Khan T, Qazi UY. COVID-19 vaccine. Adv Infect Dis. 2020;10:195-98.
  • Perlman S. Another decade, another coronavirus. N Engl J Med. 2020;382:760-62.
  • Huang Y, Yang C, Xu X-f, Xu W, Liu Sw. Structural and functional properties of COVID-19 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41:1141-49.
  • Wu F. Zhao s, Yu B, Chen YM, Wang W, hu Y. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. BioRxiv. 2020. https://doi.org/10.1101/2020.01.24.919183.
  • Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res. 2020;7:1-10.
  • Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a COVID-19 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586-90.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260-63.
  • Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y et al. Cryo-electron microscopy structures of the SARS-Covspike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017;27:119-29.
  • Yamada Y, Liu DX. Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol. 2009;83:8744-58.
  • Menachery VD, Dinnon III KH, Yount Jr BL, McAnarney ET, Gralinski LE, Hale A et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J Virol. 2020;94:e01774-79.
  • Abdool Karim SS, de Oliveira T. New COVID-19 variants-clinical, public health, and vaccine implications. N Engl J Med. 2021;384:1866-68.
  • Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: COVID-19 and SARS-Cov. Viruses. 2020;12:244-49.
  • Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing COVID-19 infectivity? Acta Bio Medica: Atenei Parmensis. 2020;91:161-64.
  • Zumla A, Chan JF, Azhar EI, Hui DS, Yuen K-Y. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327-47.
  • Kumari P, Singh A, Ngasainao MR, Shakeel I, Kumar S, Lal S et al. Potential diagnostics and therapeutic approaches in COVID-19. Clin Chim Acta. 2020;510:488-92.
  • Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir–a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6:45-51.
  • Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci. 2020;50:611-19.
  • Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐19. J Med Virol. 2020;92:740-46.
  • Chu C, Cheng V, Hung I, Wong M, Chan K, Chan K et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252-56.
  • Villar J, Confalonieri M, Pastores SM, Meduri GU. Rationale for Prolonged Corticosteroid Treatment in the Acute Respiratory Distress Syndrome Caused by Coronavirus Disease 2019. Crit Care Explor. 2020;2:e0111-15.
  • Zha L, Li S, Pan L, Tefsen B, Li Y, French N et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID‐19). Med J Aust. 2020;212:416-20.
  • Food and Drug Administration. Ritonavir-boosed nirmatrelvir (Paxlovid). https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217188s000lbl.pdf (Accessed 27.12.2023).
  • Zou R, Peng L, Shu D. Antiviral efficacy and safety of molnupiravir against Omicron variant infection: a randomized controlled clinical trial. Front Pharmacol. 2022;13:939573.
  • National Institute of Health Sciences (NIH). COVID-19 Treatment Guidelines. Molnupiravir. https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/molnupiravir/ (Accessed 28.12.2023).
  • Dixit SB, Zirpe KG, Kulkarni AP, Chaudhry D, Govil D, Mehta Y et al. Current approaches to COVID-19: therapy and prevention. Indian J Crit Care Med. 2020;24:838-42.
  • Borrell B. New York clinical trial quietly tests heartburn remedy against coronavirus. Science. https://www.science.org/content/article/new-york-clinical-trial-quietly-tests-heartburn-remedy-against-coronavirus (Accessed 29.12.2023).
  • Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938.
  • Rothan HA, Stone S, Natekar J, Kumari P, Arora K, Kumar M. The FDA-approved gold drug auranofin inhibits novel coronavirus (COVID-19) replication and attenuates inflammation in human cells. Virology. 2020;547:7-11.
  • Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med. 2005;353:1711-23.
  • Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J Heart Lung Transplant. 2020;39:405-9.
  • Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791.
  • Shen KL, Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. 2020;16:219-21.
  • Freeman EE, McMahon DE, Lipoff JB, Rosenbach M, Kovarik C, Desai SR et al. The spectrum of COVID-19 –associated dermatologic manifestations: An international registry of 716 patients from 31 countries. J Am Acad Dermatol. 2020;83:1118-29.
  • Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630.
  • Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J et al. SARS-CoV-2 infection in the lungs of human ACE2 transgenic mice causes severe inflammation, immune cell infiltration, and compromised respiratory function. BioRxiv. 2020. doi: 10.1101/2020.07.09.196188.
  • Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM et al. Human angiotensin-converting enzyme 2 transgenic mice infected with COVID-19 develop severe and fatal respiratory disease. JCI insight. 2020;5:142032.
  • Neufeldt CJ, Cerikan B, Cortese M, Frankish J, Lee JY, Plociennikowska A, et al. COVID-19 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Communications Biology. 2022;5:1-15.
  • Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020;323:1582-89.
  • Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019;322:1261-70.
  • Li X, Guo Z, Li B, Zhang X, Tian R, Wu W et al. Extracorporeal membrane oxygenation for Coronavirus disease 2019 in Shanghai, China. Extracorporeal Membrane Oxygenation for Coronavirus Disease 2019 in Shanghai, China. ASAIO J. 2020;66:475-81.
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094-99.
  • Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M et al. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. 2020;141:111418.
  • Beavis KG, Matushek SM, Abeleda APF, Bethel C, Hunt C, Gillen S et al. Evaluation of the euroimmun Anti-COVID-19 elisa assay for detection of IgA and IgG antibodies. J Clin Virol. 2020;129:104468.
  • Ayouba A, Thaurignac G, Morquin D, Tuaillon E, Raulino R, Nkuba A et al. Multiplex detection and dynamics of IgG antibodies to SARS-Cov2 and the highly pathogenic human coronaviruses SARS-Covand MERS-CoV. J Clin Virol. 2020;129:104521.
  • Wang C, Li W, Drabek D, Okba NM, van Haperen R, Osterhaus AD et al. A human monoclonal antibody blocking COVID-19 infection. Nat Commun. 2020;11:1-6.
  • Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.
  • Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X et al. Human neutralizing antibodies elicited by COVID-19 infection. Nature. 2020;584:115-19.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261-79.
  • Bliss CM, Bowyer G, Anagnostou NA, Havelock T, Snudden CM, Davies H et al. Assessment of novel vaccination regimens using viral vectored liver stage malaria vaccines encoding ME-TRAP. Scientific reports. 2018;8:1-17.
  • Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W et al. Leveraging mRNAs sequences to express COVID-19 antigens in vivo. BioRxiv. 2020. doi: 10.1101/2020.04.01.019877.
  • Pardi N, Muramatsu H, Weissman D, Karikó K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol. 2013;969:29-42.
  • Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248-51.
  • Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319-34.
  • Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2:1-17.
  • Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, DeRosa F, Mir FF et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano letters. 2015;15:7300-06.
  • Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angewandte Chemie. 2012;124:8657-61.
  • Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019;11:21733-739.
  • Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci. 2014;111:3955-60.
  • Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature biotechnology. 2008;26:561-69.
  • Conway A, Mendel M, Kim K, McGovern K, Boyko A, Zhang L et al. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol Ther. 2019;27:866-77.
  • Akita H, Ishiba R, Togashi R, Tange K, Nakai Y, Hatakeyama H et al. A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E-scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma. J Control Release. 2015;200:97-105.
  • Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21:1570-78.
  • Dong Y, Dorkin JR, Wang W, Chang PH, Webber MJ, Tang BC et al. Poly (glycoamidoamine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano letters. 2016;16:842-48.
  • Zhao M, Li M, Zhang Z, Gong T, Sun X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 2016;23:2596-2607.
  • Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016;15:313-29.
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9:776-88.
  • Cai Y, Rodriguez S, Hebel H. DNA vaccine manufacture: scale and quality. Expert Rev Vaccines. 2009;8:1277-91.
  • Yu J, Tostanoski L, Peter L, Mercado N, McMahan K, Mahrokhian S et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020;369:806-11.
  • Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26:6338-43.
  • Walker SN, Chokkalingam N, Reuschel EL, Purwar M, Xu Z, Gary EN et al. COVID-19 assays to detect functional antibody responses that block ACE2 recognition in vaccinated animals and infected patients. J Clin Microbiol. 2020;58:e01533-40.
  • Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome Coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis. 2019;19:1013-22.
  • Diehl MC, Lee JC, Daniels SE, Tebas P, Khan AS, Giffear M et al. Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers. Hum Vaccin Immunother. 2013;9:2246-52.
  • Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020;14:12522-437.
  • Liu J, Wu J, Wang B, Zeng S, Qi F, Lu C et al. Oral vaccination with a liposome‐encapsulated influenza DNA vaccine protects mice against respiratory challenge infectionJ Med Virol. 2014;86:886-94.
  • Yuki Y, Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert Rev Vaccines. 2009;8:1083-97.
  • Lee JW, Kim H. Fragmentation of dimyristoylphosphatidylcholine vesicles by apomyoglobin. Arch Biochem Biophys. 1992;297:354-61.
  • Alturki SO, Alturki SO, Connors J, Cusimano G, Kutzler MA, Izmirly AM et al. The 2020 pandemic: current COVID-19 vaccine development. Front Immunol. 2020;11:1880-86.
  • Amraiz D, Fatima M, Navid MT. COVID-19 Leading Vaccine Candidates: Progress and Development. Life Sci. 2020;1(supplement). Doi: https://doi.org/10.37185/LnS.1.1.153.
  • McAllister L, Anderson J, Werth K, Cho I, Copeland K, Bouveret NLC et al. Needle-free jet injection for administration of influenza vaccine: a randomised non-inferiority trial. Lancet. 2014;384:674-81.
  • Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS Nano. 2020;14:12522-537.
  • Park KS, Sun X, Aikins ME, Moon JJ. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev. 2021;169:137-51.
  • Iavarone C, O’hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines. 2017;16:871-81.
  • Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother. 2014;10:2875-84.
  • Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: The challenge of immune changes with aging. Semin Immunol. 2018;40:83-94.
  • Calina D, Sarkar C, Arsene AL, Salehi B, Docea AO, Mondal M et al. Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunol Res. 2020;68:315-24.
  • Jedlowski PM, Jedlowski MF. Morbilliform rash after administration of Pfizer-BioNTech COVID-19 mRNA vaccine. Dermatol Online J. 2021;27:13030/qt4xs486zg.
  • Wei N, Fishman M, Wattenberg D, Gordon M, Lebwohl M. "COVID arm": A reaction to the Moderna vaccine. JAAD Case Rep. 2021;10:92-5.
  • Hamel L, Kirzinger A, Muñana C, Brodie M. KFF COVID-19 vaccine monitor. https://www.kff.org/coronavirus-covid-19/report/kff-covid-19-vaccine-monitor-december-2020/. (Accessed 30.12.2023).
  • Mahase E. Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ. 2020;371: m4471.
  • Tang S, Morgan K. Key facts about the covid-19 vaccination programme in the UK. Journal of Paramedic Practice. 2021;13:56-8.
  • Livingston EH. Necessity of 2 doses of the Pfizer and Moderna COVID-19 vaccines. JAMA. 2021;325:898.

COVID-19 and progress in therapeutic approaches: a narrative review

Yıl 2024, Cilt: 49 Sayı: 1, 204 - 223, 29.03.2024
https://doi.org/10.17826/cumj.1394329

Öz

Coronavirus disease 2019 (COVID-19), scientifically known as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has adversely affect the respiratory system of humans and badly crushed the economies of most developed countries. This study aims to investigate the current COVID-19 situation and therapeutic approaches including non-viral vaccines, efficacy, safety, their trials, dosage protocols and mass vaccination established for COVID-19. A comprehensive literature search was conducted using PubMed, Scopus, Google Scholar, and MEDLINE databases. The title of the research articles were reviewed first, followed by the abstracts and finally the complete studies. This review critically focuses on the damaging effects of COVID-19 and its mutations, multiple variants, pharmacological approaches, and mRNA vaccines. COVID-19 is an emerging new variant with a different mutation and altered genomic structure. Different pharmacological and therapeutic approaches (interferon, oligonucleotides, anti-viral drug molecules, antibody peptides) have been made so far to combat COVID-19. Interferons are employed in COVID-19 treatment approaches owing to the role of Type I interferons in COVID-19 pathogenesis. Along with these therapeutic methodologies, companies from all over the world participated in the run to develop a vaccine for COVID-19. Vaccines were developed in less than a year for vaccinating humans on a mass level for the first time in world history. These vaccines target structural components of the virus, such as membrane proteins with a spike protein. This article provides valuable information for researchers regarding COVID-19 and progress in therapeutic approaches. This article will serve as a hallmark for understanding the COVID-19 mutation mechanism and strategies to combat these mutation points.

Kaynakça

  • Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2021;54:159-63.
  • Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z et al. COVID-19 viral load in upper respiratory specimens of infected patients. NEJM. 2020;382:1177-9.
  • Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323:1061-9.
  • Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8:e488-e96.
  • Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12:135-40.
  • Lippi G, Plebani M. The critical role of laboratory medicine during Coronavirus disease 2019 (COVID-19) and other viral outbreaks. Clin Chem Lab Med. 2020;58:1063-69.
  • World Health Organization (WHO). COVID-19 epidemiological update. https://www.who.int/publications/m/item/COVID-19-epidemiological-update---22-december-2023 (Accessed 23.12.2023).
  • Bourouiba L. Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19. JAMA. 2020;323:1837-8.
  • To KKW, Tsang OTY, Yip CCY, Chan KH, Wu TC, Chan JMC et al. Consistent detection of 2019 novel Coronavirus in saliva. Clin Infect Dis. 2020;71:841-43.
  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. COVID-19 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271-80.
  • Shervani Z, Khan I, Khan T, Qazi UY. COVID-19 vaccine. Adv Infect Dis. 2020;10:195-98.
  • Perlman S. Another decade, another coronavirus. N Engl J Med. 2020;382:760-62.
  • Huang Y, Yang C, Xu X-f, Xu W, Liu Sw. Structural and functional properties of COVID-19 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41:1141-49.
  • Wu F. Zhao s, Yu B, Chen YM, Wang W, hu Y. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. BioRxiv. 2020. https://doi.org/10.1101/2020.01.24.919183.
  • Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res. 2020;7:1-10.
  • Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a COVID-19 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586-90.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260-63.
  • Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y et al. Cryo-electron microscopy structures of the SARS-Covspike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017;27:119-29.
  • Yamada Y, Liu DX. Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J Virol. 2009;83:8744-58.
  • Menachery VD, Dinnon III KH, Yount Jr BL, McAnarney ET, Gralinski LE, Hale A et al. Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J Virol. 2020;94:e01774-79.
  • Abdool Karim SS, de Oliveira T. New COVID-19 variants-clinical, public health, and vaccine implications. N Engl J Med. 2021;384:1866-68.
  • Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: COVID-19 and SARS-Cov. Viruses. 2020;12:244-49.
  • Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing COVID-19 infectivity? Acta Bio Medica: Atenei Parmensis. 2020;91:161-64.
  • Zumla A, Chan JF, Azhar EI, Hui DS, Yuen K-Y. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15:327-47.
  • Kumari P, Singh A, Ngasainao MR, Shakeel I, Kumar S, Lal S et al. Potential diagnostics and therapeutic approaches in COVID-19. Clin Chim Acta. 2020;510:488-92.
  • Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir–a potential treatment in the COVID-19 pandemic? J Virus Erad. 2020;6:45-51.
  • Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci. 2020;50:611-19.
  • Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐19. J Med Virol. 2020;92:740-46.
  • Chu C, Cheng V, Hung I, Wong M, Chan K, Chan K et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59:252-56.
  • Villar J, Confalonieri M, Pastores SM, Meduri GU. Rationale for Prolonged Corticosteroid Treatment in the Acute Respiratory Distress Syndrome Caused by Coronavirus Disease 2019. Crit Care Explor. 2020;2:e0111-15.
  • Zha L, Li S, Pan L, Tefsen B, Li Y, French N et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID‐19). Med J Aust. 2020;212:416-20.
  • Food and Drug Administration. Ritonavir-boosed nirmatrelvir (Paxlovid). https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217188s000lbl.pdf (Accessed 27.12.2023).
  • Zou R, Peng L, Shu D. Antiviral efficacy and safety of molnupiravir against Omicron variant infection: a randomized controlled clinical trial. Front Pharmacol. 2022;13:939573.
  • National Institute of Health Sciences (NIH). COVID-19 Treatment Guidelines. Molnupiravir. https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/molnupiravir/ (Accessed 28.12.2023).
  • Dixit SB, Zirpe KG, Kulkarni AP, Chaudhry D, Govil D, Mehta Y et al. Current approaches to COVID-19: therapy and prevention. Indian J Crit Care Med. 2020;24:838-42.
  • Borrell B. New York clinical trial quietly tests heartburn remedy against coronavirus. Science. https://www.science.org/content/article/new-york-clinical-trial-quietly-tests-heartburn-remedy-against-coronavirus (Accessed 29.12.2023).
  • Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938.
  • Rothan HA, Stone S, Natekar J, Kumari P, Arora K, Kumar M. The FDA-approved gold drug auranofin inhibits novel coronavirus (COVID-19) replication and attenuates inflammation in human cells. Virology. 2020;547:7-11.
  • Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med. 2005;353:1711-23.
  • Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J Heart Lung Transplant. 2020;39:405-9.
  • Sallard E, Lescure FX, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791.
  • Shen KL, Yang YH. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. 2020;16:219-21.
  • Freeman EE, McMahon DE, Lipoff JB, Rosenbach M, Kovarik C, Desai SR et al. The spectrum of COVID-19 –associated dermatologic manifestations: An international registry of 716 patients from 31 countries. J Am Acad Dermatol. 2020;83:1118-29.
  • Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630.
  • Winkler ES, Bailey AL, Kafai NM, Nair S, McCune BT, Yu J et al. SARS-CoV-2 infection in the lungs of human ACE2 transgenic mice causes severe inflammation, immune cell infiltration, and compromised respiratory function. BioRxiv. 2020. doi: 10.1101/2020.07.09.196188.
  • Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM et al. Human angiotensin-converting enzyme 2 transgenic mice infected with COVID-19 develop severe and fatal respiratory disease. JCI insight. 2020;5:142032.
  • Neufeldt CJ, Cerikan B, Cortese M, Frankish J, Lee JY, Plociennikowska A, et al. COVID-19 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Communications Biology. 2022;5:1-15.
  • Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020;323:1582-89.
  • Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, Fisher B et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019;322:1261-70.
  • Li X, Guo Z, Li B, Zhang X, Tian R, Wu W et al. Extracorporeal membrane oxygenation for Coronavirus disease 2019 in Shanghai, China. Extracorporeal Membrane Oxygenation for Coronavirus Disease 2019 in Shanghai, China. ASAIO J. 2020;66:475-81.
  • Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18:1094-99.
  • Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M et al. COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. 2020;141:111418.
  • Beavis KG, Matushek SM, Abeleda APF, Bethel C, Hunt C, Gillen S et al. Evaluation of the euroimmun Anti-COVID-19 elisa assay for detection of IgA and IgG antibodies. J Clin Virol. 2020;129:104468.
  • Ayouba A, Thaurignac G, Morquin D, Tuaillon E, Raulino R, Nkuba A et al. Multiplex detection and dynamics of IgG antibodies to SARS-Cov2 and the highly pathogenic human coronaviruses SARS-Covand MERS-CoV. J Clin Virol. 2020;129:104521.
  • Wang C, Li W, Drabek D, Okba NM, van Haperen R, Osterhaus AD et al. A human monoclonal antibody blocking COVID-19 infection. Nat Commun. 2020;11:1-6.
  • Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489-1501.
  • Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X et al. Human neutralizing antibodies elicited by COVID-19 infection. Nature. 2020;584:115-19.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261-79.
  • Bliss CM, Bowyer G, Anagnostou NA, Havelock T, Snudden CM, Davies H et al. Assessment of novel vaccination regimens using viral vectored liver stage malaria vaccines encoding ME-TRAP. Scientific reports. 2018;8:1-17.
  • Zeng C, Hou X, Yan J, Zhang C, Li W, Zhao W et al. Leveraging mRNAs sequences to express COVID-19 antigens in vivo. BioRxiv. 2020. doi: 10.1101/2020.04.01.019877.
  • Pardi N, Muramatsu H, Weissman D, Karikó K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol Biol. 2013;969:29-42.
  • Pardi N, Hogan MJ, Pelc RS, Muramatsu H, Andersen H, DeMaso CR et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248-51.
  • Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7:319-34.
  • Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2:1-17.
  • Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, DeRosa F, Mir FF et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano letters. 2015;15:7300-06.
  • Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angewandte Chemie. 2012;124:8657-61.
  • Kulkarni JA, Witzigmann D, Leung J, Tam YYC, Cullis PR. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale. 2019;11:21733-739.
  • Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci. 2014;111:3955-60.
  • Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature biotechnology. 2008;26:561-69.
  • Conway A, Mendel M, Kim K, McGovern K, Boyko A, Zhang L et al. Non-viral delivery of zinc finger nuclease mRNA enables highly efficient in vivo genome editing of multiple therapeutic gene targets. Mol Ther. 2019;27:866-77.
  • Akita H, Ishiba R, Togashi R, Tange K, Nakai Y, Hatakeyama H et al. A neutral lipid envelope-type nanoparticle composed of a pH-activated and vitamin E-scaffold lipid-like material as a platform for a gene carrier targeting renal cell carcinoma. J Control Release. 2015;200:97-105.
  • Maier MA, Jayaraman M, Matsuda S, Liu J, Barros S, Querbes W et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol Ther. 2013;21:1570-78.
  • Dong Y, Dorkin JR, Wang W, Chang PH, Webber MJ, Tang BC et al. Poly (glycoamidoamine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano letters. 2016;16:842-48.
  • Zhao M, Li M, Zhang Z, Gong T, Sun X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 2016;23:2596-2607.
  • Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016;15:313-29.
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9:776-88.
  • Cai Y, Rodriguez S, Hebel H. DNA vaccine manufacture: scale and quality. Expert Rev Vaccines. 2009;8:1277-91.
  • Yu J, Tostanoski L, Peter L, Mercado N, McMahan K, Mahrokhian S et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020;369:806-11.
  • Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26:6338-43.
  • Walker SN, Chokkalingam N, Reuschel EL, Purwar M, Xu Z, Gary EN et al. COVID-19 assays to detect functional antibody responses that block ACE2 recognition in vaccinated animals and infected patients. J Clin Microbiol. 2020;58:e01533-40.
  • Modjarrad K, Roberts CC, Mills KT, Castellano AR, Paolino K, Muthumani K et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome Coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect Dis. 2019;19:1013-22.
  • Diehl MC, Lee JC, Daniels SE, Tebas P, Khan AS, Giffear M et al. Tolerability of intramuscular and intradermal delivery by CELLECTRA® adaptive constant current electroporation device in healthy volunteers. Hum Vaccin Immunother. 2013;9:2246-52.
  • Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020;14:12522-437.
  • Liu J, Wu J, Wang B, Zeng S, Qi F, Lu C et al. Oral vaccination with a liposome‐encapsulated influenza DNA vaccine protects mice against respiratory challenge infectionJ Med Virol. 2014;86:886-94.
  • Yuki Y, Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert Rev Vaccines. 2009;8:1083-97.
  • Lee JW, Kim H. Fragmentation of dimyristoylphosphatidylcholine vesicles by apomyoglobin. Arch Biochem Biophys. 1992;297:354-61.
  • Alturki SO, Alturki SO, Connors J, Cusimano G, Kutzler MA, Izmirly AM et al. The 2020 pandemic: current COVID-19 vaccine development. Front Immunol. 2020;11:1880-86.
  • Amraiz D, Fatima M, Navid MT. COVID-19 Leading Vaccine Candidates: Progress and Development. Life Sci. 2020;1(supplement). Doi: https://doi.org/10.37185/LnS.1.1.153.
  • McAllister L, Anderson J, Werth K, Cho I, Copeland K, Bouveret NLC et al. Needle-free jet injection for administration of influenza vaccine: a randomised non-inferiority trial. Lancet. 2014;384:674-81.
  • Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS Nano. 2020;14:12522-537.
  • Park KS, Sun X, Aikins ME, Moon JJ. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev. 2021;169:137-51.
  • Iavarone C, O’hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines. 2017;16:871-81.
  • Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother. 2014;10:2875-84.
  • Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: The challenge of immune changes with aging. Semin Immunol. 2018;40:83-94.
  • Calina D, Sarkar C, Arsene AL, Salehi B, Docea AO, Mondal M et al. Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunol Res. 2020;68:315-24.
  • Jedlowski PM, Jedlowski MF. Morbilliform rash after administration of Pfizer-BioNTech COVID-19 mRNA vaccine. Dermatol Online J. 2021;27:13030/qt4xs486zg.
  • Wei N, Fishman M, Wattenberg D, Gordon M, Lebwohl M. "COVID arm": A reaction to the Moderna vaccine. JAAD Case Rep. 2021;10:92-5.
  • Hamel L, Kirzinger A, Muñana C, Brodie M. KFF COVID-19 vaccine monitor. https://www.kff.org/coronavirus-covid-19/report/kff-covid-19-vaccine-monitor-december-2020/. (Accessed 30.12.2023).
  • Mahase E. Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ. 2020;371: m4471.
  • Tang S, Morgan K. Key facts about the covid-19 vaccination programme in the UK. Journal of Paramedic Practice. 2021;13:56-8.
  • Livingston EH. Necessity of 2 doses of the Pfizer and Moderna COVID-19 vaccines. JAMA. 2021;325:898.
Toplam 101 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bulaşıcı Hastalıklar
Bölüm Derleme
Yazarlar

Umair Ilyas Bu kişi benim 0000-0003-1582-200X

Sarmad Sheraz Jadoon Bu kişi benim 0000-0003-0630-3232

Tanzeel Ahmed Bu kişi benim 0000-0001-5898-2885

Reem Altaf Bu kişi benim 0000-0003-3850-4944

Aslam Khan Bu kişi benim 0000-0003-3490-799X

Ashfaq Ahmad Bu kişi benim 0000-0002-2368-3030

Yasir Rasool Bu kişi benim 0009-0008-2422-2536

Syed Muzzammil Masaud Bu kişi benim 0000-0003-4401-6971

Zakir Khan 0000-0003-1365-548X

Yayımlanma Tarihi 29 Mart 2024
Gönderilme Tarihi 8 Aralık 2023
Kabul Tarihi 8 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 49 Sayı: 1

Kaynak Göster

MLA Ilyas, Umair vd. “COVID-19 and Progress in Therapeutic Approaches: A Narrative Review”. Cukurova Medical Journal, c. 49, sy. 1, 2024, ss. 204-23, doi:10.17826/cumj.1394329.