Araştırma Makalesi
BibTex RIS Kaynak Göster

Engeletin’in NF-κB/iNOS ve Cyt-c/CASP-3 sinyal yolları aracılığıyla doksorubisin kaynaklı kardiyotoksisiteye karşı koruyucu etkileri

Yıl 2025, Cilt: 50 Sayı: 3, 872 - 882, 30.09.2025
https://doi.org/10.17826/cumj.1717960

Öz

Amaç: Bu çalışmanın amacı, Engeletin’in (ENG) Sitokrom c/ kaspaz 3 (Cyt-c/CASP-3) yoluyla apopitoz, Transforme Edici Büyüme Faktörü Beta 1 (TGF-β1) yoluyla fibrozis ve Doksorubisin (DOX) kaynaklı kardiyotoksisitede Nükleer Faktör Kappa B/ İndüklenebilir Nitrik Oksit Sentaz (NF-κB/iNOS) sinyalleme kaskadı yoluyla oksidatif durum üzerindeki etkilerini değerlendirmektir.
Gereç ve Yöntem: Çalışma beş gruptan oluşmaktadır: Kontrol, DOX (1 µM), DOX + ENG 10 µM, DOX + ENG 20 µM ve DOX + ENG 40 µM. Proinflamatuvar, apopitotik ve fibrotik sinyal kaskadlarındaki gen ekspresyon seviyeleri gerçek zamanlı ters transkripsiyon-kantitatif polimeraz zincir reaksiyonu analiz ile kantifiye edildi. Oksidatif stres parametreleri spektrofotometrik analiz ile belirlendi.
Bulgular: Bulgular ENG'nin kardiyomiyosit (H9c2) hücre canlılığını önemli ölçüde iyileştirdiğini, laktat dehidrogenaz (LDH) seviyelerini azalttığını (%52) ve DOX kaynaklı reaktif oksijen türleri (ROS) oluşumunu zayıflattığını göstermektedir. Dahası, ENG NF-κB (DOX: 2.220.09; DOXENG 10: 2.00 0.02; DOXENG 20: 1.800.06; DOXENG 40:1.230.05), inaktivasyonu yoluyla proinflamatuvar sitokinleri ve inflamatuvar enzimleri aşağı düzenledi. Veriler ayrıca ENG’nin apopitotik yolda Cyt-c, CASP-3, ve B-hücre Lenfoma 2/ Bcl-2 İlişkili X Proteini (Bcl2/BAX) (ekspresyonunu aşağı düzenleyerek kardiyomiyosit apopitozunu engellediğini gösterdi.
Sonuç: Genel olarak, bu gözlemler ENG’nin oksidatif stresi, kardiyomiyofibrozu ve apopitozu zayıflatarak DOX kaynaklı kardiyotoksisite üzerinde kardiyoprotektif etkisi olduğunu göstermektedir.

Proje Numarası

KÜBAP-01/2022-26

Kaynakça

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7-30.
  • Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52:1213-25.
  • Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154-71.
  • Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90:2063-76.
  • Brown SA, Sandhu N, Herrmann J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol. 2015;12:718-31.
  • Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T et al. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: oxidative stress and cell death. Int J Biol Sci. 2022;18:760-71.
  • Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708.
  • Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res. 2002;62:4592-98.
  • Dick E, Rajamohan D, Ronksley J, Denning C. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans. 2010;38:1037-45.
  • Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 2011;47:125-31.
  • Sangweni NF, van Vuuren D, Mabasa L, Gabuza K, Huisamen B, Naidoo S et al. Prevention of anthracycline-induced cardiotoxicity: the good and bad of current and alternative therapies. Front Cardiovasc Med. 2022;9:907266.
  • Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: a review. Molecules. 2022;27:1320.
  • Huang Z, Ji H, Shi J, Zhu X, Zhi Z. Engeletin attenuates Aβ1-42-induced oxidative stress and neuroinflammation by keap1/Nrf2 pathway. Inflammation. 2020;43:1759-71.
  • Liu T, Li Y, Sun J, Tian G, Shi Z. Engeletin suppresses lung cancer progression by inducing apoptotic cell death through modulating the XIAP signaling pathway: a molecular mechanism involving ER stress. Biomed Pharmacother. 2020;128:110221.
  • Tian Q, Wang G, Zhang Y, Zhang F, Yang L, Liu Z et al. Engeletin inhibits lipopolysaccharide/D-galactosamine-induced liver injury in mice through activating PPAR-γ. J Pharmacol Sci. 2019;140:218-22.
  • Jiang X, Chen L, Zhang Z, Sun Y, Wang X, Wei J. Protective and therapeutic effects of engeletin on LPS-induced acute lung injury. Inflammation. 2018;41:1259-65.
  • Wu H, Zhao G, Jiang K, Li C, Qiu C, Deng G. Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-B activation. J Agric Food Chem. 2016;64:6171-8.
  • Wu YZ, Zhang L, Wu ZX, Shan TT, Xiong C. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev. 2019;2019:1-14.
  • Winterbourn CC, Hawkins RE, Brian M, Carrell R. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85:337-41.
  • Tangjitjaroenkun J, Supabphol R, Chavasiri W. Antioxidant effect of Zanthoxylum limonella Alston. J Med Plant Res. 2012;6:1407-14.
  • Fang Z, Liu Z, Tao B, Jiang X. Engeletin mediates antiarrhythmic effects in mice with isoproterenol-induced cardiac remodeling. Biomed Pharmacother. 2023;161:114439.
  • Wei J, Zhang Y, Li D, Xie T, Li Y, Li J et al. Integrating network pharmacology and component analysis study on anti‐atherosclerotic mechanisms of total flavonoids of Engelhardia roxburghiana leaves in mice. Chem Biodivers. 2020;17:e1900629.
  • Zilinyi R, Czompa A, Czegledi A, Gajtko A, Pituk D, Lekli I et al. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy. Molecules. 2018;23:1184.
  • Cappetta D, De Angelis A, Sapio L, et al. Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longev. 2017;2017:1521020.
  • De Geest B, Mishra M. Role of oxidative stress in heart failure: insights from gene transfer studies. Biomedicines. 2021;9:1645.
  • Matouk AI, Taye A, Heeba GH, El-Moselhy MA. Quercetin augments the protective effect of losartan against chronic doxorubicin cardiotoxicity in rats. Environ Toxicol Pharmacol. 2013;36:443-50.
  • Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41-8.
  • Wang J, Yao L, Wu X, Guo Q, Sun S, Li J et al. Protection against doxorubicin-induced cardiotoxicity through modulating iNOS/ARG 2 balance by electroacupuncture at PC6. Oxid Med Cell Longev. 2021;2021:6628957.
  • Neilan TG, Blake SL, Ichinose F, Raher MJ, Buys ES, Jassal DS et al. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation. 2007;116:506-14.
  • Alkuraishy HM, Al-Gareeb AI, Al-Hussaniy HA. Doxorubicin-induced cardiotoxicity: molecular mechanism and protection by conventional drugs and natural products. Int J Clin Oncol Cancer Res. 2017;2:31-44.
  • Huang H, Cheng Z, Shi H, Xin W, Wang TT, Yu L. Isolation and characterization of two flavonoids, engeletin and astilbin, from the leaves of Engelhardia roxburghiana and their potential anti-inflammatory properties. J Agric Food Chem. 2011;59:4562-9.
  • Zhao X, Chen R, Shi Y, Zhang X, Tian C, Xia D. Antioxidant and anti-inflammatory activities of six flavonoids from Smilax glabra Roxb. Molecules. 2020;25:5295.
  • Wei Z, Ni X, Cui H, Shu C, Peng Y, Liu J et al.. Engeletin attenuates the inflammatory response via inhibiting TLR4-NFB signaling pathway in Crohns disease-like colitis. J Ethnopharmacol. 2025;336:118733.
  • Chen W, Zhang L, Zhong G, Liu S, Sun Y, Zhang J et al.. Regulation of microglia inflammation and oligodendrocyte demyelination by engeletin via the TLR4/RRP9/NF-κB pathway after spinal cord injury. Pharmacol Res. 2024;209:107448.
  • Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96:219-32.
  • Zhong X, Huang R, Chen X, Lei Y. A review on the pharmacological aspects of engeletin as natural compound. Drug Des Devel Ther. 2023;17:3833-43.
  • Li J, Geng Z, Yin L, Huang J, Niu M, Zhang K et al. Engeletin targets mitochondrial dysfunction to attenuate oxidative stress and experimental colitis in intestinal epithelial cells through AMPK/SIRT1/PGC-1α signaling. Antioxidants (Basel). 2025;14:524.
  • Mason FE, Pronto JRD, Alhussini K, Maack C, Voigt N. Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Res Cardiol. 2020;115:72.
  • Chen K, Wang S, Sun QW, Zhang B, Ullah M, Sun Z. Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway. Circ Res. 2021;128:492-507.
  • Renu K, Abilash V, PB TP, Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy - an update. Eur J Pharmacol. 2018;818:241-53.
  • Zhang J, Chen X, Chen H, Li R, Xu P, Lv C et al. Engeletin ameliorates pulmonary fibrosis through endoplasmic reticulum stress depending on lnc949-mediated TGF-1-Smad2/3 and JNK signalling pathways. Pharm Biol. 2020;58:1114-23.

Protective effects of engeletin on doxorubicin-induced cardiotoxicity via NF-κB/iNOS and Cyt-c/CASP-3 signaling pathways

Yıl 2025, Cilt: 50 Sayı: 3, 872 - 882, 30.09.2025
https://doi.org/10.17826/cumj.1717960

Öz

Purpose: The goal of this study was to assess the effects of Engeletin (ENG) on apoptosis via the Cytochrome c/ Caspase 3 (Cyt-c/CASP-3) pathway, fibrosis via the Transforming Growth Factor Beta 1 (TGF-β1) pathway, and oxidative status via the Nuclear Factor kappa-light-chain-enhancer of activated B cells/ Inducible Nitric Oxide Synthase (NF-κB/iNOS) signaling cascade, in doxorubicin (DOX)-induced cardiotoxicity.
Materials and Methods: The study sample included five groups: Control, DOX (1 µM), DOX + ENG 10 µM, DOX + ENG 20 µM, and DOX + ENG 40 µM. Gene expression levels in the proinflammatory, apoptotic, and fibrotic signal cascades were quantified by real-time reverse transcription-quantitative polymerase chain reaction analysis. Oxidative stress parameters were determined by spectrophotometric analysis.
Results: Data demonstrate that ENG substantially improved H9c2 cell viability, diminished lactate dehydrogenase (LDH) levels (52%), and attenuated DOX-induced ROS generation. Furthermore, ENG down-regulated proinflammatory cytokines and inflammatory enzymes through NF-κB inactivation. The data also showed that ENG inhibited cardiomyocyte apoptosis by downregulating Cyt-c, CASP-3, and B-cell lymphoma 2/ Bcl-2-associated X protein (Bcl2/BAX) expression in the apoptotic pathway.
Conclusion: These observations suggest the cardioprotective effect of ENG on DOX-induced cardiotoxicity by attenuating oxidative stress, cardiomyofibrosis, and apoptosis.

Proje Numarası

KÜBAP-01/2022-26

Kaynakça

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7-30.
  • Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52:1213-25.
  • Simunek T, Sterba M, Popelova O, Adamcova M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154-71.
  • Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90:2063-76.
  • Brown SA, Sandhu N, Herrmann J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat Rev Clin Oncol. 2015;12:718-31.
  • Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T et al. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: oxidative stress and cell death. Int J Biol Sci. 2022;18:760-71.
  • Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708.
  • Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C. Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res. 2002;62:4592-98.
  • Dick E, Rajamohan D, Ronksley J, Denning C. Evaluating the utility of cardiomyocytes from human pluripotent stem cells for drug screening. Biochem Soc Trans. 2010;38:1037-45.
  • Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 2011;47:125-31.
  • Sangweni NF, van Vuuren D, Mabasa L, Gabuza K, Huisamen B, Naidoo S et al. Prevention of anthracycline-induced cardiotoxicity: the good and bad of current and alternative therapies. Front Cardiovasc Med. 2022;9:907266.
  • Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The role of flavonoids as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: a review. Molecules. 2022;27:1320.
  • Huang Z, Ji H, Shi J, Zhu X, Zhi Z. Engeletin attenuates Aβ1-42-induced oxidative stress and neuroinflammation by keap1/Nrf2 pathway. Inflammation. 2020;43:1759-71.
  • Liu T, Li Y, Sun J, Tian G, Shi Z. Engeletin suppresses lung cancer progression by inducing apoptotic cell death through modulating the XIAP signaling pathway: a molecular mechanism involving ER stress. Biomed Pharmacother. 2020;128:110221.
  • Tian Q, Wang G, Zhang Y, Zhang F, Yang L, Liu Z et al. Engeletin inhibits lipopolysaccharide/D-galactosamine-induced liver injury in mice through activating PPAR-γ. J Pharmacol Sci. 2019;140:218-22.
  • Jiang X, Chen L, Zhang Z, Sun Y, Wang X, Wei J. Protective and therapeutic effects of engeletin on LPS-induced acute lung injury. Inflammation. 2018;41:1259-65.
  • Wu H, Zhao G, Jiang K, Li C, Qiu C, Deng G. Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-B activation. J Agric Food Chem. 2016;64:6171-8.
  • Wu YZ, Zhang L, Wu ZX, Shan TT, Xiong C. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev. 2019;2019:1-14.
  • Winterbourn CC, Hawkins RE, Brian M, Carrell R. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975;85:337-41.
  • Tangjitjaroenkun J, Supabphol R, Chavasiri W. Antioxidant effect of Zanthoxylum limonella Alston. J Med Plant Res. 2012;6:1407-14.
  • Fang Z, Liu Z, Tao B, Jiang X. Engeletin mediates antiarrhythmic effects in mice with isoproterenol-induced cardiac remodeling. Biomed Pharmacother. 2023;161:114439.
  • Wei J, Zhang Y, Li D, Xie T, Li Y, Li J et al. Integrating network pharmacology and component analysis study on anti‐atherosclerotic mechanisms of total flavonoids of Engelhardia roxburghiana leaves in mice. Chem Biodivers. 2020;17:e1900629.
  • Zilinyi R, Czompa A, Czegledi A, Gajtko A, Pituk D, Lekli I et al. The cardioprotective effect of metformin in doxorubicin-induced cardiotoxicity: the role of autophagy. Molecules. 2018;23:1184.
  • Cappetta D, De Angelis A, Sapio L, et al. Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longev. 2017;2017:1521020.
  • De Geest B, Mishra M. Role of oxidative stress in heart failure: insights from gene transfer studies. Biomedicines. 2021;9:1645.
  • Matouk AI, Taye A, Heeba GH, El-Moselhy MA. Quercetin augments the protective effect of losartan against chronic doxorubicin cardiotoxicity in rats. Environ Toxicol Pharmacol. 2013;36:443-50.
  • Songbo M, Lang H, Xinyong C, Bin X, Ping Z, Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41-8.
  • Wang J, Yao L, Wu X, Guo Q, Sun S, Li J et al. Protection against doxorubicin-induced cardiotoxicity through modulating iNOS/ARG 2 balance by electroacupuncture at PC6. Oxid Med Cell Longev. 2021;2021:6628957.
  • Neilan TG, Blake SL, Ichinose F, Raher MJ, Buys ES, Jassal DS et al. Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation. 2007;116:506-14.
  • Alkuraishy HM, Al-Gareeb AI, Al-Hussaniy HA. Doxorubicin-induced cardiotoxicity: molecular mechanism and protection by conventional drugs and natural products. Int J Clin Oncol Cancer Res. 2017;2:31-44.
  • Huang H, Cheng Z, Shi H, Xin W, Wang TT, Yu L. Isolation and characterization of two flavonoids, engeletin and astilbin, from the leaves of Engelhardia roxburghiana and their potential anti-inflammatory properties. J Agric Food Chem. 2011;59:4562-9.
  • Zhao X, Chen R, Shi Y, Zhang X, Tian C, Xia D. Antioxidant and anti-inflammatory activities of six flavonoids from Smilax glabra Roxb. Molecules. 2020;25:5295.
  • Wei Z, Ni X, Cui H, Shu C, Peng Y, Liu J et al.. Engeletin attenuates the inflammatory response via inhibiting TLR4-NFB signaling pathway in Crohns disease-like colitis. J Ethnopharmacol. 2025;336:118733.
  • Chen W, Zhang L, Zhong G, Liu S, Sun Y, Zhang J et al.. Regulation of microglia inflammation and oligodendrocyte demyelination by engeletin via the TLR4/RRP9/NF-κB pathway after spinal cord injury. Pharmacol Res. 2024;209:107448.
  • Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96:219-32.
  • Zhong X, Huang R, Chen X, Lei Y. A review on the pharmacological aspects of engeletin as natural compound. Drug Des Devel Ther. 2023;17:3833-43.
  • Li J, Geng Z, Yin L, Huang J, Niu M, Zhang K et al. Engeletin targets mitochondrial dysfunction to attenuate oxidative stress and experimental colitis in intestinal epithelial cells through AMPK/SIRT1/PGC-1α signaling. Antioxidants (Basel). 2025;14:524.
  • Mason FE, Pronto JRD, Alhussini K, Maack C, Voigt N. Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Res Cardiol. 2020;115:72.
  • Chen K, Wang S, Sun QW, Zhang B, Ullah M, Sun Z. Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway. Circ Res. 2021;128:492-507.
  • Renu K, Abilash V, PB TP, Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy - an update. Eur J Pharmacol. 2018;818:241-53.
  • Zhang J, Chen X, Chen H, Li R, Xu P, Lv C et al. Engeletin ameliorates pulmonary fibrosis through endoplasmic reticulum stress depending on lnc949-mediated TGF-1-Smad2/3 and JNK signalling pathways. Pharm Biol. 2020;58:1114-23.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kanser Hücre Biyolojisi
Bölüm Araştırma
Yazarlar

İrfan Çınar 0000-0002-9826-2556

Serdar Akyel 0000-0002-0717-8640

Büşra Dincer 0000-0002-3365-7741

Proje Numarası KÜBAP-01/2022-26
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 16 Haziran 2025
Kabul Tarihi 15 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 3

Kaynak Göster

MLA Çınar, İrfan vd. “Protective effects of engeletin on doxorubicin-induced cardiotoxicity via NF-κB/iNOS and Cyt-c/CASP-3 signaling pathways”. Cukurova Medical Journal, c. 50, sy. 3, 2025, ss. 872-8, doi:10.17826/cumj.1717960.