Araştırma Makalesi
BibTex RIS Kaynak Göster

Ekstraselüler asiditenin oksidatif strese karşı koruyuculuğunda otofaji ve apoptozun etkisi

Yıl 2025, Cilt: 50 Sayı: 3, 919 - 929, 30.09.2025
https://doi.org/10.17826/cumj.1754448

Öz

Amaç: Bu çalışmada, ekstraselüler asiditenin oksidatif stres direncine ve hücre ölüm yolaklarına etkileri Saccharomyces cerevisiae modelinde ilk kez araştırılmıştır.
Gereç ve Yöntem: S. cerevisiae hücreleri normal ve asidik pH’a sahip ortamlarda kültüre edilerek 8 mM hidrojen peroksit (H₂O₂) ile oksidatif strese maruz bırakıldı. Hücre canlılığı, reaktif oksijen türleri (ROS) birikimi, apoptotik hücre oranları ve otofajik aktivite, CFU sayımı, floresan boyama ve mikroskopi yöntemleriyle değerlendirildi. Ayrıca, apoptoz ve otofaji ile ilişkili genetik mutantlar kullanılarak bu süreçlerin stres yanıtındaki rolleri araştırıldı.
Bulgular: Asidik ortamda bulunan hücreler, oksidatif strese karşı daha yüksek hayatta kalma oranı gösterdi. Bu durum, daha düşük ROS düzeyleri (%18,35’ten %2,44’e), daha düşük apoptoz oranları (%21,06’dan %12,45’e) ve artan MDC floresan oranı (97,68’den 115,48’e) ile doğrulandı. Ayrıca, 30 dakikalık H₂O₂ maruziyeti sonrasında CFU kat değişimi oranı, asidik koşullarda 0,031’den 0,181’e yükseldi. Asidik ortamda oksidatif strese maruz bırakılan mutant suşlarda CFU kat değişim oranları yca1Δ (0,172), atg4Δ (0,215) ve atg8Δ (0,153) suşlarında yabanıl tipe (0,103) kıyasla daha yüksek bulunmuştur. Bu bulgular, hem apoptoz hem de otofaji yolaklarının asidik koşullarda oksidatif stres yanıtına katkı sağladığını göstermektedir.
Sonuç: Bu bulgular, asidik mikroçevrenin hücre kaderini nasıl etkilediğine dair yeni bilgiler sunmakta olup, oksidatif stres ve doku asidozu ile ilişkili hastalıklarda tedavi stratejileri açısından önemli bir hedef olabileceğini göstermektedir.

Kaynakça

  • Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89.
  • Smallbone K, Gavaghan DJ, Gatenby RA, Maini PK. The role of acidity in solid tumour growth and invasion. J Theor Biol. 2005;235:476–84.
  • da Silva VP, Mesquita CB, Nunes JS, de Bem Prunes B, Rados PV, Visioli F et al. Effects of extracellular acidity on resistance to chemotherapy treatment: a systematic review. Med Oncol. 2018;35:161.
  • Denk S, Neher MD, Messerer DAC, Wiegner R, Nilsson B, Rittirsch D et al. Complement C5a functions as a master switch for the pH balance in neutrophils exerting fundamental immunometabolic effects. J Immunol. 2017;198:4846–54.
  • Jiang W, Le J, Wang PY, Cheng X, Smelkinson M, Dong W et al. Extracellular acidity reprograms macrophage metabolism and innate responsiveness. J Immunol. 2021;206:3021–31.
  • Trevani AS, Andonegui G, Giordano M, López DH, Gamberale R, Minucci F et al. Extracellular acidification induces human neutrophil activation. J Immunol. 1999;162:4849–57.
  • Chen A, Dong L, Leffler NR, Asch AS, Witte ON, Yang LV. Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS One. 2011;6:e27586.
  • D’Arcangelo D, Facchiano F, Barlucchi LM, Melillo G, Illi B, Testolin L et al. Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ Res. 2000;86:312–8.
  • Díaz FE, Dantas E, Cabrera M, Benítez CA, Delpino MV, Duette G et al. Fever-range hyperthermia improves the anti-apoptotic effect induced by low pH on human neutrophils promoting a proangiogenic profile. Cell Death Dis. 2016;7:e2437.
  • Recek N, Zhou R, Zhou R, Te’o VSJ, Speight RE, Mozetič M et al. Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Sci Rep. 2018;8:8252.
  • Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol. 2012;2:64.
  • Madeo F, Carmona-Gutierrez D, Ring J, Büttner S, Eisenberg T, Kroemer G. Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun. 2009;382:227–31.
  • Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci. 2016;73:2237–50.
  • Anding AL, Baehrecke EH. Cleaning house: selective autophagy of organelles. Dev Cell. 2017;41:10–22.
  • Gozuacik D, Kimchi A. Autophagy and cell death. Curr Top Dev Biol. 2007;78:217–45.
  • Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25:1025–40
  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG et al. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001;12:323–37.
  • Guaragnella N, Stirpe M, Marzulli D, Mazzoni C, Giannattasio S. Acid stress triggers resistance to acetic acid-induced regulated cell death through Hog1 activation which requires RTG2 in yeast. Oxid Med Cell Longev. 2019;2019:4651062.
  • Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E. Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene. 2005;354:93–8.
  • Xie WY, Zhou XD, Li Q, Chen LX, Ran DH. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress. Exp Cell Res. 2015;339:270–9.
  • Pellegrini P, Strambi A, Zipoli C, Hägg-Olofsson M, Buoncervello M, Linder S et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy. 2014;10:562–71.
  • Atalay PB, Kaluc N, Cavusoglu EE. Effect of mitosis on the resistance to oxidative and osmotic stresses in yeast. Sakarya University Journal of Science. 2020;24:265–71.
  • Atalay PB, Kaluç N. Mitoz sırasında H₂O₂ ile indüklenen oksidatif strese karşı dirençte Yca1’in rolünün incelenmesi. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2019;12:230–39.
  • Chen X, Zhong Z, Xu Z, Chen L, Wang Y. 2’,7’-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res. 2010;44:587–604.
  • Kaluç N, Thomas PB. Hypochlorous acid induces caspase dependent apoptosis in Saccharomyces cerevisiae. Journal of Biosciences and Medicines. 2021;9:42–53.
  • Munafó DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 2001;114:3619–29.
  • Biederbick A, Kern HF, Elsässer HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3–14.
  • Malakar D, Dey A, Ghosh AK. Protective role of S-adenosyl-L-methionine against hydrochloric acid stress in Saccharomyces cerevisiae. Biochim Biophys Acta. 2006;1760:1298–303.
  • de Melo HF, Bonini BM, Thevelein J, Simões DA, Morais MA Jr. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol. 2010;109:116–27.
  • Wei F, Xie Q, Huang Z, Yang A, Duan Y. Induction of autophagy and endoplasmic reticulum autophagy caused by cadmium telluride quantum dots are protective mechanisms of yeast cell. J Appl Toxicol. 2022;42:1146–58.
  • Li W, He P, Huang Y, Li YF, Lu J, Li M et al. Selective autophagy of intracellular organelles: recent research advances. Theranostics. 2021;11:222–56.
  • Liu Z, Shi A, Song D, Han B, Zhang Z, Ma L et al. Resistin confers resistance to doxorubicin-induced apoptosis in human breast cancer cells through autophagy induction. Am J Cancer Res. 2017;7:574–83.
  • Bohloli M, Atashi A, Soleimani M, Kaviani S, Anbarlou A. Investigating effects of acidic pH on proliferation, invasion and drug-induced apoptosis in lymphoblastic leukemia. Cancer Microenviron. 2016;9:119–26.

Autophagy and apoptosis in the oxidative stress protection of extracellular acidity

Yıl 2025, Cilt: 50 Sayı: 3, 919 - 929, 30.09.2025
https://doi.org/10.17826/cumj.1754448

Öz

Purpose: This study aimed to investigate the impact of extracellular acidity on oxidative stress resistance and to explore the interplay between apoptosis and autophagy on Saccharomyces cerevisiae.
Materials and Methods: Cells were cultured under either standard or acidic media and exposed to 8 mM hydrogen peroxide (H₂O₂) to induce oxidative stress. Cell viability, intracellular reactive oxygen species (ROS) levels, apoptotic cell ratio, and autophagolysosomes were evaluated by colony-forming unit (CFU) assay, fluorescence-based staining techniques, and microscopy. Mutant strains deficient in key genes in apoptosis and autophagy were utilized to evaluate specific contributions of these pathways to oxidative stress resistance.
Results: Cells cultured in the acidic environment showed resistance to oxidative stress. The CFU fold change ratios after 30 minutes of exposure were increased from 0.031 to 0.181, ROS levels were reduced from 18.35% to 2.44%, apoptotic cell ratios were decreased from 21.06% to 12.45%, and autophagic activities were increased from 97.68 to 115.48. In mutant strains subjected to oxidative stress in acidic media, CFU fold change ratios were also higher in yca1Δ (0.172), atg4Δ (0.215), and atg8Δ (0.153) compared to wild-type cells (0.103), indicating that both apoptosis and autophagy pathways contribute to the oxidative stress response under acidic conditions.
Conclusion: These findings provide novel insights into the influence of acidic microenvironments on cellular stress responses and may contribute to the development of therapeutic strategies for diseases associated with oxidative damage and tissue acidosis.

Destekleyen Kurum

Maltepe University

Kaynakça

  • Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89.
  • Smallbone K, Gavaghan DJ, Gatenby RA, Maini PK. The role of acidity in solid tumour growth and invasion. J Theor Biol. 2005;235:476–84.
  • da Silva VP, Mesquita CB, Nunes JS, de Bem Prunes B, Rados PV, Visioli F et al. Effects of extracellular acidity on resistance to chemotherapy treatment: a systematic review. Med Oncol. 2018;35:161.
  • Denk S, Neher MD, Messerer DAC, Wiegner R, Nilsson B, Rittirsch D et al. Complement C5a functions as a master switch for the pH balance in neutrophils exerting fundamental immunometabolic effects. J Immunol. 2017;198:4846–54.
  • Jiang W, Le J, Wang PY, Cheng X, Smelkinson M, Dong W et al. Extracellular acidity reprograms macrophage metabolism and innate responsiveness. J Immunol. 2021;206:3021–31.
  • Trevani AS, Andonegui G, Giordano M, López DH, Gamberale R, Minucci F et al. Extracellular acidification induces human neutrophil activation. J Immunol. 1999;162:4849–57.
  • Chen A, Dong L, Leffler NR, Asch AS, Witte ON, Yang LV. Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS One. 2011;6:e27586.
  • D’Arcangelo D, Facchiano F, Barlucchi LM, Melillo G, Illi B, Testolin L et al. Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression. Circ Res. 2000;86:312–8.
  • Díaz FE, Dantas E, Cabrera M, Benítez CA, Delpino MV, Duette G et al. Fever-range hyperthermia improves the anti-apoptotic effect induced by low pH on human neutrophils promoting a proangiogenic profile. Cell Death Dis. 2016;7:e2437.
  • Recek N, Zhou R, Zhou R, Te’o VSJ, Speight RE, Mozetič M et al. Improved fermentation efficiency of S. cerevisiae by changing glycolytic metabolic pathways with plasma agitation. Sci Rep. 2018;8:8252.
  • Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol. 2012;2:64.
  • Madeo F, Carmona-Gutierrez D, Ring J, Büttner S, Eisenberg T, Kroemer G. Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun. 2009;382:227–31.
  • Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci. 2016;73:2237–50.
  • Anding AL, Baehrecke EH. Cleaning house: selective autophagy of organelles. Dev Cell. 2017;41:10–22.
  • Gozuacik D, Kimchi A. Autophagy and cell death. Curr Top Dev Biol. 2007;78:217–45.
  • Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25:1025–40
  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG et al. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001;12:323–37.
  • Guaragnella N, Stirpe M, Marzulli D, Mazzoni C, Giannattasio S. Acid stress triggers resistance to acetic acid-induced regulated cell death through Hog1 activation which requires RTG2 in yeast. Oxid Med Cell Longev. 2019;2019:4651062.
  • Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E. Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene. 2005;354:93–8.
  • Xie WY, Zhou XD, Li Q, Chen LX, Ran DH. Acid-induced autophagy protects human lung cancer cells from apoptosis by activating ER stress. Exp Cell Res. 2015;339:270–9.
  • Pellegrini P, Strambi A, Zipoli C, Hägg-Olofsson M, Buoncervello M, Linder S et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy. 2014;10:562–71.
  • Atalay PB, Kaluc N, Cavusoglu EE. Effect of mitosis on the resistance to oxidative and osmotic stresses in yeast. Sakarya University Journal of Science. 2020;24:265–71.
  • Atalay PB, Kaluç N. Mitoz sırasında H₂O₂ ile indüklenen oksidatif strese karşı dirençte Yca1’in rolünün incelenmesi. Mersin Üniversitesi Sağlık Bilimleri Dergisi. 2019;12:230–39.
  • Chen X, Zhong Z, Xu Z, Chen L, Wang Y. 2’,7’-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res. 2010;44:587–604.
  • Kaluç N, Thomas PB. Hypochlorous acid induces caspase dependent apoptosis in Saccharomyces cerevisiae. Journal of Biosciences and Medicines. 2021;9:42–53.
  • Munafó DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci. 2001;114:3619–29.
  • Biederbick A, Kern HF, Elsässer HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol. 1995;66:3–14.
  • Malakar D, Dey A, Ghosh AK. Protective role of S-adenosyl-L-methionine against hydrochloric acid stress in Saccharomyces cerevisiae. Biochim Biophys Acta. 2006;1760:1298–303.
  • de Melo HF, Bonini BM, Thevelein J, Simões DA, Morais MA Jr. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol. 2010;109:116–27.
  • Wei F, Xie Q, Huang Z, Yang A, Duan Y. Induction of autophagy and endoplasmic reticulum autophagy caused by cadmium telluride quantum dots are protective mechanisms of yeast cell. J Appl Toxicol. 2022;42:1146–58.
  • Li W, He P, Huang Y, Li YF, Lu J, Li M et al. Selective autophagy of intracellular organelles: recent research advances. Theranostics. 2021;11:222–56.
  • Liu Z, Shi A, Song D, Han B, Zhang Z, Ma L et al. Resistin confers resistance to doxorubicin-induced apoptosis in human breast cancer cells through autophagy induction. Am J Cancer Res. 2017;7:574–83.
  • Bohloli M, Atashi A, Soleimani M, Kaviani S, Anbarlou A. Investigating effects of acidic pH on proliferation, invasion and drug-induced apoptosis in lymphoblastic leukemia. Cancer Microenviron. 2016;9:119–26.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Biyokimya ve Metabolomik (Diğer)
Bölüm Araştırma
Yazarlar

Nur Kaluç 0000-0002-7323-3150

Damla Koyun 0009-0002-5731-9592

Pınar Buket Demırel 0000-0001-7627-0291

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 31 Temmuz 2025
Kabul Tarihi 30 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 3

Kaynak Göster

MLA Kaluç, Nur vd. “Autophagy and apoptosis in the oxidative stress protection of extracellular acidity”. Cukurova Medical Journal, c. 50, sy. 3, 2025, ss. 919-2, doi:10.17826/cumj.1754448.