Derleme
BibTex RIS Kaynak Göster

REZİN MATRİKS SERAMİKLER-DERLEME

Yıl 2022, , 114 - 118, 15.02.2022
https://doi.org/10.17567/ataunidfd.888870

Öz

Biyolojik uyumluluk ve yüksek estetik talepler konusunda endişelerin artması hastalar ve diş hekimlerini metalsiz, diş rengindeki restorasyonlara doğru yöneltmektedir. Giderek daha geniş kullanıma sahip olan bilgisayar destekli tasarım/ bilgisayar destekli üretim (CAD/CAM) sistemleri geçmişten günümüze büyük bir gelişim göstermektedir. Bu gelişim ile birlikte artan materyal seçeneği, daha hızlı ve yüksek kalitede estetik restorasyon üretimi olanağı tanımıştır. Diş hekimliğinde kullanılan iki önemli materyal grubu seramikler ve kompozitlerdir. Rezin matriks seramikler, hem seramiğin hem de kompozitlerin olumlu özelliklerini birleştiren yeni bir seramik sınıfıdır. Seramikler, biyouyumlu materyallerdir. Seramiklerin kimyasal stabiliteleri, bükülme dayanımları ve elastik modülleri kompozit materyallere göre oldukça yüksektir ancak bu materyallerin karşıt doğal dişte fazla aşınmaya sebep olmaları, millenmelerinin ve tamir edilebilmelerinin kompozitlere göre daha zor olması problem oluşturmaktadır. Kompozitlerin ise olumlu özelliklerinin yanı sıra aşınma dirençleri, biyouyumluluğu ve mekanik özellikleri seramiklere göre daha zayıftır. Bu iki materyalin olumlu özelliklerinin bir araya getirildiği, bilgisayar destekli tasarım/ bilgisayar destekli üretim teknolojisi ile kullanılan rezin matriks seramikler piyasaya sunulmuştur. Bu materyaller yüksek oranda doldurulmuş seramik parçacıkları içeren organik bir matriksten oluşur. Rezin matriks seramikler dentine yakın elastik modüle sahiptir ve ağız içerisinde kolaylıkla aşındırılıp cilası yapılabilir. Bu derlemenin amacı piyasaya yeni sunulan rezin matriks seramik materyallerinin mikroyapısal, mekanik ve fiziksel özellikleri hakkında bilgi vermektir.
Anahtar Kelimeler: Rezin matriks seramik, nano seramik, hibrit seramik
RESIN MATRIX CERAMICS-AN OVERVIEW
Abstract
Patients and dentists tend to make metal-free, tooth-colored restorations with increasing concerns about biocompatibility and high aesthetic demands, computer aided design/computer aided manufacturing (CAD/CAM) systems which have become more widely used, have shown great improvement from past to present. Increasing material choice has enabled faster and higher quality aesthetic restoration production with this development. Two important material groups used in dentistry are ceramics and composites. Resin matrix ceramics is a new class of ceramics that combines the positive properties of both ceramics and composites. Ceramics are biocompatible materials. The chemical stability, flexural strength and elastic modulus of ceramics are considerably higher than composite materials, however they cause the problem such as excessive wear the opposing natural tooth, be more difficult to mill, and repair than composites. In addition to the positive properties of the composites, their abrasion resistance, biocompatibility and mechanical properties are weaker than ceramics. Resin matrix ceramics are used with computer aided design/computer aided manufacturing system technology, combining the positive properties of these two materials, were introduced to the market. This material consists of an organic matrix with a high proportion of ceramic particle-filled. Resin matrix ceramics have an elastic modulus close to dentin and they can easily be abraded and polished in the mouth. The purpose of this review is to give information about the microstructural, mechanical and physical properties of the newly introduced resin matrix ceramic materials.
Keywords: Resin matrix ceramic, nano ceramic, hybrid ceramic

Kaynakça

  • 1. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014;93(12):1232–1234.
  • 2. Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, Finger WJ, Arksornnukit M. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33(5):705–710.
  • 3. Villarroel M, Fahl N, De Sousa AM, De Oliveira OB Jr. Direct esthetic restorations based on translucency and opacity of composite resins. J Esthet Restor Dent. 2011;23(2):73-87.
  • 4. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments. J Adhes Dent. 2014;16(6):531–540.
  • 5. Karaalioğlu OF, Duymuş ZY. Diş hekimliğinde uygulanan CAD/CAM sistemleri. J Dent Fac Ataturk Uni. 2008;(1):25-32.
  • 6. Coldea A., Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater J. 2013;29(4):419-426.
  • 7. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater J. 2014;30(9):954-962.
  • 8. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater J. 2014;30(5):564-569.
  • 9. Rohr N, Flury A, Fischer J. Efficacy of a universal adhesive in the bond strength of composite cements to polymer-infiltrated ceramic. J Adhes Dent. 2017;19(5):417-424.
  • 10. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res. 2016;95:487-495
  • 11. Alt V, Hannig M, Wöstmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 2011;27(4):339-347.
  • 12. Balkenhol M, Mautner MC, Ferger P, Wöstmann B. Mechanical properties of provisional crown and bridge materials: chemicalcuring versus dual-curing systems. J Dent. 2008;36(1):15-20.
  • 13. Stawarczyk B, Ender A, Trottmann A, Özcan M, Fischer J, Hämmerle CH. Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: effect of aging regimens. Clin Oral Investig. 2012;16(6):1669-1677.
  • 14. Barutcigil K, Barutcigil Ç, Kul E, Özarslan MM, Buyukkaplan US. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J Prosthodont. 2019;28(1):71-78.
  • 15. Mörmann WH, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and martens hardness. J Mech Behav Biomed Mater. 2013;20:113-125.
  • 16. Nguyen JF, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater. 2012;28(5):529-534.
  • 17. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent. 2014;26(6):382–393
  • 18. Wang LK, Liu YN, Hui H, Li PP. Color stability of computer aided design and computer aided manufacture composite ceramic/resin cements after accelerated ageing. Zhonghua kou qiang yi xue za zhi=Chinese J Stomatology. 2019;54(11):765-769.
  • 19. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-593.
  • 20. American Dental Association. CDT: Code on dental procedures and nomenclature. http://www.ada.org/en/publications/cdt/. Accessed March 17, 2015.
  • 21. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235.
  • 22. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater. 2016;32(11):275-283.
  • 23. Nguyen J, Ruse D, Phan A, Sadoun M. High-temperature-pressure polymerized resin-infiltrated ceramic networks. J Dent. Res. 2014;93(1):62-67.
  • 24. Facenda JC, Borba M, Corazza PH. A literature review on the new polymer-infiltrated ceramic-network material (PICN). J Esthet Restor Dent. 2018;30(4):281-286.
  • 25. He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011;27(6):527-534.
  • 26. Tassin M, Bonte E, Loison-Robert LS, et al. Effects of hightemperature-pressure polymerized resin-infiltrated ceramic networks on oral stem cells. PLoS One. 2016;11(5):e0155450
  • 27. Furtado de Mendonca A, Shahmoradi M, Gouvêa C, De Souza GM, Ellakwa A. Microstructural and Mechanical Characterization of CAD/CAM Materials for Monolithic Dental Restorations. J Prosthodont. 2019;28(2):587–594.
  • 28. Aladağ A, Oğuz D, Çömlekoğlu ME, Akan E. In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment. J Adv Prosthodont. 2019;11(2):120–127.
  • 29. Acar O, Yilmaz B, Altintas SH, Chandrasekaran I, Johnston WM. Color stainability of CAD/CAM and nanocomposite resin materials. J Prosthet Dent. 2016;115(1):71–75.
  • 30. Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers. J Prosthodont Res. 2014;58(2):107-114.
  • 31. Shetty R, Shenoy K, Dandekeri S, Suhaim KS, Ragher M, Francis J. Resin-matrix ceramics – an overview. Int J Recent Sci Res. 2015;6(11):7414-7417.
  • 32. Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Proshet Dent. 2018;119(3):384-389.
  • 33. Lührs AK, Pongprueksa P, De Munck J, Geurtsen W, Van Meerbeek B. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin. Dent Mater. 2014;30(3):281-291.
  • 34. Sen N, Us YO. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J Prosthet Dent. 2018;119(4):593-599.
  • 35. Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):495–500.
  • 36. Lucsanszky IJ, Ruse ND. Fracture Toughness, Flexural Strength, and Flexural Modulus of New CAD/CAM Resin Composite Blocks. J Prosthodont.2020;29(1):34-41.
  • 37. Schepke U, Meijer HJ, Vermeulen KM, Raghoebar GM, Cune MS. Clinical Bonding of R esin Nano Ceramic Restorations to Zirconia Abutments: A Case Series within a Randomized Clinical Trial. Clin Implant Dent R. 2016;18(5):984-992.
  • 38. Bonfante EA, Suzuki M, Lorenzoni FC, Sena LA, Hirata R, Bonfante G, Coelho PG. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns. Dent Mater. 2015;31(8):168-177.
  • 39. Awad D, Stawarczyk B, Liebermann A, Ilie N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J Prosthet Dent. 2015;113(6):534-540.
  • 40. Zhang HB, Huo H, Liu LJ. Influence of different surface treatments on resin nano ceramic-resin cement bond strength. Zhonghua kou qiang yi xue za zhi=Chinese J Stomatology. 2020;38(2):155.
  • 41. Romanini-Junior JC, Hirata R, Bonfante EA, et al. Monolithic CAD/CAM laminate veneers: Reliability and failure modes. Dent Mater. 2020;36(6):724-732.
  • 42. Voco Dental. Voco Grandio Block [online]. https://www.voco.dental/en/products/indirect-restoration/cad-cam-material/grandio-blocs.aspx [Accessed 2 June 2020].
  • 43. Rosentritt M, Krifka S, Strasser T, Preis V. Fracture force of CAD/CAM resin composite crowns after in vitro aging. Clin Oral Investig. 2020;24(7):2395–2401.
  • 44. Tekçe N, Fidan S, Tuncer S, Kara, D, Demirci M. The effect of glazing and aging on the surface properties of CAD/CAM resin blocks. J Adv Prosthodont. 2018;10(1):50-57.
  • 45. Şişmanoğlu S, Gürcan AT, Yıldırım-Bilmez Z, Turunç-Oğuzman R, Gümüştaş B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J Adv Prosthodont. 2020;12(1):22-32.
  • 46. GC Cerasmart [online]. https://www.gcamerica.com/products/digital/CERASMART/ [Accessed 2 Semtember 2020].
  • 47. Horvath S. Key Parameters of Hybrid Materials for CAD/CAM-Based Restorative Dentistry. Compend Contin Educ Dent. 2016;37(9):638-643.
  • 48. Huang XQ, Hong NR, Zou LY, Wu SY, Li Y. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs. Clin Oral Investig. 2020;24(9):3157-3167.
  • 49. Fasbinder DJ, Neiva GF, Dennison JB, Heys DR. Clinical Performance of CAD/CAM-Generated Composite Inlays After 10 Years. J Cosmet Dent. 2013;28(4):134-145.
  • 50. Oğuz Eİ, Kılıçarslan MA, Özcan M. Effect of endodontic access simulation on the fracture strength of lithium-disilicate and resin-matrix ceramic CAD-CAM crowns. J Esthet Restor Dent. 2020;32(5):472-479
  • 51. Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater. 2013;26:34-42.
  • 52. Tinschert J, Zwez D, Marx R, Anusavice K. Structural reliability of alumina-, feldspar-, leucite-, mica-and zirconia-based ceramics. J Dent. 2000;28(7):529-535.
  • 53. Mine A, Kabetani T, Kawaguchi-Uemura A, et al. Effectiveness of current adhesive systems when bonding to CAD/CAM indirect resin materials: a review of 32 publications. Jpn Dent Sci Rev. 2019;55(1):41-50.
  • 54. Hampe R, Theelke B, Lümkemann N, Eichberger M, Stawarczyk B. Fracture toughness analysis of ceramic and resin composite CAD/CAM material. Oper Dent. 2019;44(4):E190-E201.
  • 55. Spitznagel FA, Scholz KJ, Strub JR, Vach K, Gierthmuehlen PC. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin Oral Investig. 2018;22(5):1973-1983.
  • 56. Hampe R, Theelke B, Lümkemann N, Stawarczyk B. Impact of artificial aging by thermocycling on edge chipping resistance and Martens hardness of different dental CAD-CAM restorative materials. J Prosthet Dent. 2020; available online 27 February 2020.
  • 57. Chirumamilla G, Goldstein CE, Lawson NC. A 2-year retrospective clinical study of enamic crowns performed in a private practice setting. J Esthet Restor Dent. 2016;28(4):231-237.
  • 58. Stawarczyk B, Liebermann A, Eichberger M, Güth JF. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed. 2016;55:1-11.
  • 59. Mushashe AM, Farias IC, Gonzaga CC, Cunha LFd, Ferracane JL, Correr GM. Surface Deterioration of Indirect Restorative Materials. Braz Dent J. 2020;31(3):264-271.
  • 60. Fasbinder DJ. Materials for chairside CAD/CAM restorations. Compend Contin Educ Dent. 2010;31(9):702-704.
  • 61. Paradigm TM MZ100 Block Technical Product Profile. 3M ESPE [online]. https://multimedia.3m.com/mws/media/77596O/3m-paradigm-mz100-block-for-cerec-technical-product-profile.pdf. [Accessed 10 October 2020].
  • 62. Höland W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress® 2 and the IPS Empress® glass-ceramics. J Biomed Mater Res. 2000;53(4):297-303.
  • 63. Magne P, Knezevic A. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars. Quintessence Int. 2009;40(2):125-133.
  • 64. Tsitrou EA, Helvatjoglu-Antoniades M, Van Noort R. A preliminary evaluation of the structural integrity and fracture mode of minimally prepared resin bonded CAD/CAM crowns. J Dent. 2010;38(1):16-22.
  • 65. Kassem AS, Atta O, El-Mowafy O. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns. J Prosthodont. 2012;21(1):28-32.
  • 66. Thornton I, Ruse ND. Characterization of nanoceramic resin composite and lithium disilicate blocks. J Dent Res. 2014;93(Special Issue B):151.
  • 67. Demirel G, Baltacıoğlu İH. Influence of different universal adhesives on the repair performance of hybrid CAD-CAM materials. Restor Dent Endod. 2019;44(3):e23.
  • 68. Shofu. Shofu Block HC Broşür (online). https://www.shofu.de/wp-content/uploads/2018/06/SHOFU-Block-HC-Disk-HC-Info-UK.pdf [Accessed 2 June 2020].

REZİN MATRİKS SERAMİKLER-DERLEME

Yıl 2022, , 114 - 118, 15.02.2022
https://doi.org/10.17567/ataunidfd.888870

Öz

Biyolojik uyumluluk ve yüksek estetik talepler konusunda endişelerin artması hastalar ve diş hekimlerini metalsiz, diş rengindeki restorasyonlara doğru yöneltmektedir. Giderek daha geniş kullanıma sahip olan bilgisayar destekli tasarım/ bilgisayar destekli üretim (CAD/CAM) sistemleri geçmişten günümüze büyük bir gelişim göstermektedir. Bu gelişim ile birlikte artan materyal seçeneği, daha hızlı ve yüksek kalitede estetik restorasyon üretimi olanağı tanımıştır. Diş hekimliğinde kullanılan iki önemli materyal grubu seramikler ve kompozitlerdir. Rezin matriks seramikler, hem seramiğin hem de kompozitlerin olumlu özelliklerini birleştiren yeni bir seramik sınıfıdır. Seramikler, biyouyumlu materyallerdir. Seramiklerin kimyasal stabiliteleri, bükülme dayanımları ve elastik modülleri kompozit materyallere göre oldukça yüksektir ancak bu materyallerin karşıt doğal dişte fazla aşınmaya sebep olmaları, millenmelerinin ve tamir edilebilmelerinin kompozitlere göre daha zor olması problem oluşturmaktadır. Kompozitlerin ise olumlu özelliklerinin yanı sıra aşınma dirençleri, biyouyumluluğu ve mekanik özellikleri seramiklere göre daha zayıftır. Bu iki materyalin olumlu özelliklerinin bir araya getirildiği, bilgisayar destekli tasarım/ bilgisayar destekli üretim teknolojisi ile kullanılan rezin matriks seramikler piyasaya sunulmuştur. Bu materyaller yüksek oranda doldurulmuş seramik parçacıkları içeren organik bir matriksten oluşur. Rezin matriks seramikler dentine yakın elastik modüle sahiptir ve ağız içerisinde kolaylıkla aşındırılıp cilası yapılabilir. Bu derlemenin amacı piyasaya yeni sunulan rezin matriks seramik materyallerinin mikroyapısal, mekanik ve fiziksel özellikleri hakkında bilgi vermektir.
Anahtar Kelimeler: Rezin matriks seramik, nano seramik, hibrit seramik
RESIN MATRIX CERAMICS-AN OVERVIEW
Abstract
Patients and dentists tend to make metal-free, tooth-colored restorations with increasing concerns about biocompatibility and high aesthetic demands, computer aided design/computer aided manufacturing (CAD/CAM) systems which have become more widely used, have shown great improvement from past to present. Increasing material choice has enabled faster and higher quality aesthetic restoration production with this development. Two important material groups used in dentistry are ceramics and composites. Resin matrix ceramics is a new class of ceramics that combines the positive properties of both ceramics and composites. Ceramics are biocompatible materials. The chemical stability, flexural strength and elastic modulus of ceramics are considerably higher than composite materials, however they cause the problem such as excessive wear the opposing natural tooth, be more difficult to mill, and repair than composites. In addition to the positive properties of the composites, their abrasion resistance, biocompatibility and mechanical properties are weaker than ceramics. Resin matrix ceramics are used with computer aided design/computer aided manufacturing system technology, combining the positive properties of these two materials, were introduced to the market. This material consists of an organic matrix with a high proportion of ceramic particle-filled. Resin matrix ceramics have an elastic modulus close to dentin and they can easily be abraded and polished in the mouth. The purpose of this review is to give information about the microstructural, mechanical and physical properties of the newly introduced resin matrix ceramic materials.
Keywords: Resin matrix ceramic, nano ceramic, hybrid ceramic

Kaynakça

  • 1. Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014;93(12):1232–1234.
  • 2. Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, Finger WJ, Arksornnukit M. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33(5):705–710.
  • 3. Villarroel M, Fahl N, De Sousa AM, De Oliveira OB Jr. Direct esthetic restorations based on translucency and opacity of composite resins. J Esthet Restor Dent. 2011;23(2):73-87.
  • 4. Elsaka SE. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: the effect of surface treatments. J Adhes Dent. 2014;16(6):531–540.
  • 5. Karaalioğlu OF, Duymuş ZY. Diş hekimliğinde uygulanan CAD/CAM sistemleri. J Dent Fac Ataturk Uni. 2008;(1):25-32.
  • 6. Coldea A., Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater J. 2013;29(4):419-426.
  • 7. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater J. 2014;30(9):954-962.
  • 8. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater J. 2014;30(5):564-569.
  • 9. Rohr N, Flury A, Fischer J. Efficacy of a universal adhesive in the bond strength of composite cements to polymer-infiltrated ceramic. J Adhes Dent. 2017;19(5):417-424.
  • 10. Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res. 2016;95:487-495
  • 11. Alt V, Hannig M, Wöstmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater. 2011;27(4):339-347.
  • 12. Balkenhol M, Mautner MC, Ferger P, Wöstmann B. Mechanical properties of provisional crown and bridge materials: chemicalcuring versus dual-curing systems. J Dent. 2008;36(1):15-20.
  • 13. Stawarczyk B, Ender A, Trottmann A, Özcan M, Fischer J, Hämmerle CH. Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: effect of aging regimens. Clin Oral Investig. 2012;16(6):1669-1677.
  • 14. Barutcigil K, Barutcigil Ç, Kul E, Özarslan MM, Buyukkaplan US. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J Prosthodont. 2019;28(1):71-78.
  • 15. Mörmann WH, Stawarczyk B, Ender A, Sener B, Attin T, Mehl A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and martens hardness. J Mech Behav Biomed Mater. 2013;20:113-125.
  • 16. Nguyen JF, Migonney V, Ruse ND, Sadoun M. Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater. 2012;28(5):529-534.
  • 17. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent. 2014;26(6):382–393
  • 18. Wang LK, Liu YN, Hui H, Li PP. Color stability of computer aided design and computer aided manufacture composite ceramic/resin cements after accelerated ageing. Zhonghua kou qiang yi xue za zhi=Chinese J Stomatology. 2019;54(11):765-769.
  • 19. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-593.
  • 20. American Dental Association. CDT: Code on dental procedures and nomenclature. http://www.ada.org/en/publications/cdt/. Accessed March 17, 2015.
  • 21. Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28(3):227-235.
  • 22. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater. 2016;32(11):275-283.
  • 23. Nguyen J, Ruse D, Phan A, Sadoun M. High-temperature-pressure polymerized resin-infiltrated ceramic networks. J Dent. Res. 2014;93(1):62-67.
  • 24. Facenda JC, Borba M, Corazza PH. A literature review on the new polymer-infiltrated ceramic-network material (PICN). J Esthet Restor Dent. 2018;30(4):281-286.
  • 25. He LH, Swain M. A novel polymer infiltrated ceramic dental material. Dent Mater. 2011;27(6):527-534.
  • 26. Tassin M, Bonte E, Loison-Robert LS, et al. Effects of hightemperature-pressure polymerized resin-infiltrated ceramic networks on oral stem cells. PLoS One. 2016;11(5):e0155450
  • 27. Furtado de Mendonca A, Shahmoradi M, Gouvêa C, De Souza GM, Ellakwa A. Microstructural and Mechanical Characterization of CAD/CAM Materials for Monolithic Dental Restorations. J Prosthodont. 2019;28(2):587–594.
  • 28. Aladağ A, Oğuz D, Çömlekoğlu ME, Akan E. In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment. J Adv Prosthodont. 2019;11(2):120–127.
  • 29. Acar O, Yilmaz B, Altintas SH, Chandrasekaran I, Johnston WM. Color stainability of CAD/CAM and nanocomposite resin materials. J Prosthet Dent. 2016;115(1):71–75.
  • 30. Johnson AC, Versluis A, Tantbirojn D, Ahuja S. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers. J Prosthodont Res. 2014;58(2):107-114.
  • 31. Shetty R, Shenoy K, Dandekeri S, Suhaim KS, Ragher M, Francis J. Resin-matrix ceramics – an overview. Int J Recent Sci Res. 2015;6(11):7414-7417.
  • 32. Goujat A, Abouelleil H, Colon P, Jeannin C, Pradelle N, Seux D, Grosgogeat B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J Proshet Dent. 2018;119(3):384-389.
  • 33. Lührs AK, Pongprueksa P, De Munck J, Geurtsen W, Van Meerbeek B. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin. Dent Mater. 2014;30(3):281-291.
  • 34. Sen N, Us YO. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J Prosthet Dent. 2018;119(4):593-599.
  • 35. Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):495–500.
  • 36. Lucsanszky IJ, Ruse ND. Fracture Toughness, Flexural Strength, and Flexural Modulus of New CAD/CAM Resin Composite Blocks. J Prosthodont.2020;29(1):34-41.
  • 37. Schepke U, Meijer HJ, Vermeulen KM, Raghoebar GM, Cune MS. Clinical Bonding of R esin Nano Ceramic Restorations to Zirconia Abutments: A Case Series within a Randomized Clinical Trial. Clin Implant Dent R. 2016;18(5):984-992.
  • 38. Bonfante EA, Suzuki M, Lorenzoni FC, Sena LA, Hirata R, Bonfante G, Coelho PG. Probability of survival of implant-supported metal ceramic and CAD/CAM resin nanoceramic crowns. Dent Mater. 2015;31(8):168-177.
  • 39. Awad D, Stawarczyk B, Liebermann A, Ilie N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J Prosthet Dent. 2015;113(6):534-540.
  • 40. Zhang HB, Huo H, Liu LJ. Influence of different surface treatments on resin nano ceramic-resin cement bond strength. Zhonghua kou qiang yi xue za zhi=Chinese J Stomatology. 2020;38(2):155.
  • 41. Romanini-Junior JC, Hirata R, Bonfante EA, et al. Monolithic CAD/CAM laminate veneers: Reliability and failure modes. Dent Mater. 2020;36(6):724-732.
  • 42. Voco Dental. Voco Grandio Block [online]. https://www.voco.dental/en/products/indirect-restoration/cad-cam-material/grandio-blocs.aspx [Accessed 2 June 2020].
  • 43. Rosentritt M, Krifka S, Strasser T, Preis V. Fracture force of CAD/CAM resin composite crowns after in vitro aging. Clin Oral Investig. 2020;24(7):2395–2401.
  • 44. Tekçe N, Fidan S, Tuncer S, Kara, D, Demirci M. The effect of glazing and aging on the surface properties of CAD/CAM resin blocks. J Adv Prosthodont. 2018;10(1):50-57.
  • 45. Şişmanoğlu S, Gürcan AT, Yıldırım-Bilmez Z, Turunç-Oğuzman R, Gümüştaş B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J Adv Prosthodont. 2020;12(1):22-32.
  • 46. GC Cerasmart [online]. https://www.gcamerica.com/products/digital/CERASMART/ [Accessed 2 Semtember 2020].
  • 47. Horvath S. Key Parameters of Hybrid Materials for CAD/CAM-Based Restorative Dentistry. Compend Contin Educ Dent. 2016;37(9):638-643.
  • 48. Huang XQ, Hong NR, Zou LY, Wu SY, Li Y. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs. Clin Oral Investig. 2020;24(9):3157-3167.
  • 49. Fasbinder DJ, Neiva GF, Dennison JB, Heys DR. Clinical Performance of CAD/CAM-Generated Composite Inlays After 10 Years. J Cosmet Dent. 2013;28(4):134-145.
  • 50. Oğuz Eİ, Kılıçarslan MA, Özcan M. Effect of endodontic access simulation on the fracture strength of lithium-disilicate and resin-matrix ceramic CAD-CAM crowns. J Esthet Restor Dent. 2020;32(5):472-479
  • 51. Coldea A, Swain MV, Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J Mech Behav Biomed Mater. 2013;26:34-42.
  • 52. Tinschert J, Zwez D, Marx R, Anusavice K. Structural reliability of alumina-, feldspar-, leucite-, mica-and zirconia-based ceramics. J Dent. 2000;28(7):529-535.
  • 53. Mine A, Kabetani T, Kawaguchi-Uemura A, et al. Effectiveness of current adhesive systems when bonding to CAD/CAM indirect resin materials: a review of 32 publications. Jpn Dent Sci Rev. 2019;55(1):41-50.
  • 54. Hampe R, Theelke B, Lümkemann N, Eichberger M, Stawarczyk B. Fracture toughness analysis of ceramic and resin composite CAD/CAM material. Oper Dent. 2019;44(4):E190-E201.
  • 55. Spitznagel FA, Scholz KJ, Strub JR, Vach K, Gierthmuehlen PC. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin Oral Investig. 2018;22(5):1973-1983.
  • 56. Hampe R, Theelke B, Lümkemann N, Stawarczyk B. Impact of artificial aging by thermocycling on edge chipping resistance and Martens hardness of different dental CAD-CAM restorative materials. J Prosthet Dent. 2020; available online 27 February 2020.
  • 57. Chirumamilla G, Goldstein CE, Lawson NC. A 2-year retrospective clinical study of enamic crowns performed in a private practice setting. J Esthet Restor Dent. 2016;28(4):231-237.
  • 58. Stawarczyk B, Liebermann A, Eichberger M, Güth JF. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J Mech Behav Biomed. 2016;55:1-11.
  • 59. Mushashe AM, Farias IC, Gonzaga CC, Cunha LFd, Ferracane JL, Correr GM. Surface Deterioration of Indirect Restorative Materials. Braz Dent J. 2020;31(3):264-271.
  • 60. Fasbinder DJ. Materials for chairside CAD/CAM restorations. Compend Contin Educ Dent. 2010;31(9):702-704.
  • 61. Paradigm TM MZ100 Block Technical Product Profile. 3M ESPE [online]. https://multimedia.3m.com/mws/media/77596O/3m-paradigm-mz100-block-for-cerec-technical-product-profile.pdf. [Accessed 10 October 2020].
  • 62. Höland W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress® 2 and the IPS Empress® glass-ceramics. J Biomed Mater Res. 2000;53(4):297-303.
  • 63. Magne P, Knezevic A. Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars. Quintessence Int. 2009;40(2):125-133.
  • 64. Tsitrou EA, Helvatjoglu-Antoniades M, Van Noort R. A preliminary evaluation of the structural integrity and fracture mode of minimally prepared resin bonded CAD/CAM crowns. J Dent. 2010;38(1):16-22.
  • 65. Kassem AS, Atta O, El-Mowafy O. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns. J Prosthodont. 2012;21(1):28-32.
  • 66. Thornton I, Ruse ND. Characterization of nanoceramic resin composite and lithium disilicate blocks. J Dent Res. 2014;93(Special Issue B):151.
  • 67. Demirel G, Baltacıoğlu İH. Influence of different universal adhesives on the repair performance of hybrid CAD-CAM materials. Restor Dent Endod. 2019;44(3):e23.
  • 68. Shofu. Shofu Block HC Broşür (online). https://www.shofu.de/wp-content/uploads/2018/06/SHOFU-Block-HC-Disk-HC-Info-UK.pdf [Accessed 2 June 2020].
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Derlemeler
Yazarlar

Elif Melike Akarca Bu kişi benim

Dilara Şahin Bu kişi benim

Ragibe Şenay Cana Bu kişi benim

Yayımlanma Tarihi 15 Şubat 2022
Gönderilme Tarihi 26 Şubat 2020
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

AMA Akarca EM, Şahin D, Cana RŞ. REZİN MATRİKS SERAMİKLER-DERLEME. Curr Res Dent Sci. Şubat 2022;32(1):114-118. doi:10.17567/ataunidfd.888870

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936