Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 198 - 203, 28.07.2024
https://doi.org/10.17567/currresdentsci.1520453

Öz

Kaynakça

  • 1. Stookey GK, González-Cabezas C. Emerging methods of caries diagnosis. J Dent Educ. 2001;65:1001-1006. doi:10.1002/j.0022-0337.2001.65.10.tb03441.x
  • 2. Banting DW. The diagnosis of root caries. J Dent Educ. 2001;65:991-996. doi: 10.1111/j.1741-2358.1990.tb00267.x
  • 3. Nikiforuk G. 10 The Caries Process—Morphological and Chemical Events. Understanding dental caries, Karger Publishers, 1985: doi:261-289. 10.1159/000409659
  • 4. Banerjee A, Kidd EA, Watson TF. In vitro evaluation of five alternative methods of carious dentine excavation. Caries Res. 2000;34:144-150 doi: 10.1159/000016582.
  • 5. Rafique S, Fiske J, Banerjee A. Clinical trial of an air-abrasion/chemomechanical operative procedure for the restorative treatment of dental patients. Caries Res. 2003;37:360-364. doi: 10.1159/000072168.
  • 6. Eberhard J, Zahl A, Dommisch H, Winter J, Acil Y, Jepsen S. Heat shock induces the synthesis of the inflammatory mediator leukotriene B4 in human pulp cells. Int Endod J. 2005;38:882-888. doi: 10.1111/j.1365-2591.2005.01032.x.
  • 7. de Oliveira MT, de Freitas PM, de Paula Eduardo C, Ambrosio GM, Giannini M. Influence of Diamond Sono-Abrasion, Air-Abrasion and Er: YAG Laser Irradiation on Bonding of Different Adhesive Systems to Dentin. Eur J Dent. 2007;1:158-166. doi: 10.1055/S-0039-1698332.
  • 8. Mahdi M, Haidar A. Evaluation of the Efficacy of Caries Removal Using Papain Gel (Brix 3000) and Smart Preparation Bur(in vivo Comparative Study). J Pharm Sci & Res. 2019;11(2):444-449. https://www.jpsr.pharmainfo.in/Documents/Volumes/vol11issue02/jpsr11021933.pdf
  • 9. Lennon ÁM, Attin T, Martens S, Buchalla W. Fluorescence-aided caries excavation (FACE), caries detector, and conventional caries excavation in primary teeth. Pediatric Dent. 2009, 31: 316-319.
  • 10. Tassery H, Levallois B, Terrer E, Manton D, Otsuki M, Koubi S, Gugnani N, Panayotov I, Jacquot B, Cuisinier F. Use of new minimum intervention dentistry technologies in caries management. Australian Dent J. 2013; 58: 40-59.
  • 11. Kidd E, Ricketts D, Beighton D. Criteria for caries removal at the enamel-dentine junction: a clinical and microbiological study. British Dental J. 1996; 180: 287.
  • 12. Neves AdA, Coutinho E, De Munck J, Van Meerbeek B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: a micro-CT investigation. J Dent. 2011; 39: 154-162.
  • 13. Flückiger L, Waltimo T, Stich H, Lussi A. Comparison of chemomechanical caries removal using Carisolv™ or conventional hand excavation in deciduous teeth in vitro. J Dent. 2005; 33: 87-90.
  • 14. Nadanovsky P, Carneino FC, Souza DE, Mello F. Removal of caries using only hand instruments. A comparison of mechanical and chemo-mechanical methods. Caries Res. 2001; 35(5):384-9
  • 15. Reyes-Gasga J, Alcantara-Rodriguez C, Gonzalez-Trejo A, Madrigal-Colin A. Child, adult and aged human tooth enamel characterized by electrón microscopy. Acta Microscopica. 1997; 6: 24-38.
  • 16. Marshall Jr GW. Dentin: Dentin: microstructure and characterization. Quintessence Int. 1993 Sep;24(9):606-17
  • 17. Fosse G, Saele PK, Eide R. Numerical density and distributional pattern of dentin tubules. Acta Odontol Scan. 1992; 50: 201-210.
  • 18. Hosoya Y, Marshall S, Watanabe L, Marshall G. Microhardness of carious deciduous dentin. Oper Dent. 2000; 25: 81-89.
  • 19. Marshall Jr GW, Marshall SJ, Kinney JH, Balooch M. The dentin substrate: structure and properties related to bonding. J Dent. 1997;25: 441-458.
  • 20. Boob AR, Manjula M, Reddy ER, Srilaxmi N, Rani T. Evaluation of the efficiency and effectiveness of three minimally invasive methods of caries removal: an in vitro study. Int J Clin Pediatr Dent. 2014; 7: 11.
  • 21. Hamama H, Yiu C, Burrow MF, King N. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust Dent J. 2013; 58: 283-292.
  • 22. Lennon AM, Buchalla W, Switalski L, Stookey GK (2002) Residualcaries detection using visible fluorescence. Caries Res. 2002; 36(5):315-319
  • 23. Lennon AM. Fluorescence-aided caries excavation (FACE) compared to conventional method. Oper Dent.2003;28:341–345
  • 24. Lennon AM, Buchalla W, Rassner B, Becker K, Attin T (2006) Efficiency of four caries excavation methods compared. Oper Dent.2006; 31:551–555 29.
  • 25. Lennon AM, Attin T, Buchalla W (2007) Quantity of remaining bacteria and cavity size after excavation with FACE, caries detector dye and conventional excavation in vitro. Oper Dent. 2007;32:236–241
  • 26. Marshall G, Habelitz S, Gallagher R, Balooch M, Balooch G, Marshall S. Nanomechanical properties of hydrated carious human dentin. J Dent R. 2001; 80: 1768-1771.
  • 27. Erhardt MCG, Toledano M, Osorio R, Pimenta LA. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater. 2008;24: 786-798.
  • 28. Aggarwal V, Singla M, Yadav S, Yadav H. The effect of caries excavation methods on the bond strength of etch‐and‐rinse and self‐etch adhesives to caries affected dentine. Aust Dent J. 2013; 58: 454-460.
  • 29. Tripathi RS, Pathak K. Optimization studies on development and evaluation of papain-based in situ gelling system for chemomechanical caries removal. Pharm Dev Technol. 2015; 20: 801-811
  • 30. Neves AdA, Coutinho E, Cardoso MV, De Munck J, Van Meerbeek B. Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques. Dental Mater. 2011; 27: 552-562.
  • 31. Hamama H, Yiu C, Burrow MF, King N. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust Dent J. 2013; 58: 283-292.
  • 32. Pires Corrêa FN, Oliveira Rocha Rd, Rodrigues Filho LE, Muench A, Delgado Rodrigues CRM. Chemical versus conventional caries removal techniques in primary teeth: a microhardness study. Journal of Clinical Pediatric Dentistry, 2007, 31: 187-192.
  • 33. Meller C, Welk A, Zeligowski T, Splieth C. Comparison of dentin caries excavation with polymer and conventional tungsten carbide burs. Quint Int. 2007;38(7):565-9.
  • 34. Dammaschke T, Rodenberg T, Schäfer E, Ott K. Efficiency of the polymer bur SmartPrep compared with conventional tungsten carbide bud bur in dentin caries excavation. Oper Dent.2006, 31: 256-260.
  • 35. Prabhakar A, Kiran NK. Clinical evaluation of polyamide polymer burs for selective carious dentin removal. J Contemp Dent Pract. 2009; 10: 26-34.
  • 36. Leontiev W, Magni E, Dettwiler C, Meller C, Weiger R, Connert T. Clinical Oral Invest. 2021 25:5189–5196. DOI: 10.1007/s00784-021-03826-7.

The Effect Of Different Caries Removal Methods On The Surface Hardness and Micro-tensile Bond Strength

Yıl 2024, , 198 - 203, 28.07.2024
https://doi.org/10.17567/currresdentsci.1520453

Öz

Objective: This study aims to evaluate the effects of five different caries removal methods on caries removal effectiveness according to microhardness and micro tensile bond strength values.
Materials: In this study, for the microhardness test, micro-tensile bond strength test (n = 10) SEM analysis (n = 2), and a total of 72 human molar teeth were used. Caries lesions were removed with conventional (steel bur, ceramic bur, polymer bur) methods, chemomechanical method (Brix-3000), and fluorescence-aided caries excavation method (Siroinspect). Then, teeth were sectioned longitudinally through the cavity center and were subjected to the microhardness test, micro tensile test, and SEM atomic analysis. Statistical analyses were performed using one-way ANOVA and Duncan post-hoc tests.
Results: A statistically significant difference was found between all caries removal methods and measurement levels at certain distances from the cavity floor (0, 25, 50, 75 μm) (p <0.05). As a result of the microhardness test, the group in which the fluorescence-aided caries removal method was applied was significantly higher than those in which the other caries removal methods were applied (p <0.05). According to the results of the micro tensile bond strength test, a significant difference was found between the groups where Siroinspect, BRIX-3000, steel bur caries removal methods were applied and the groups of polymer bur and ceramic bur (p <0.05).
Conclusion: According to the results obtained from this study, the Siroinspect device in the category of FACE method can be a reliable alternative to traditional caries removal methods.

Kaynakça

  • 1. Stookey GK, González-Cabezas C. Emerging methods of caries diagnosis. J Dent Educ. 2001;65:1001-1006. doi:10.1002/j.0022-0337.2001.65.10.tb03441.x
  • 2. Banting DW. The diagnosis of root caries. J Dent Educ. 2001;65:991-996. doi: 10.1111/j.1741-2358.1990.tb00267.x
  • 3. Nikiforuk G. 10 The Caries Process—Morphological and Chemical Events. Understanding dental caries, Karger Publishers, 1985: doi:261-289. 10.1159/000409659
  • 4. Banerjee A, Kidd EA, Watson TF. In vitro evaluation of five alternative methods of carious dentine excavation. Caries Res. 2000;34:144-150 doi: 10.1159/000016582.
  • 5. Rafique S, Fiske J, Banerjee A. Clinical trial of an air-abrasion/chemomechanical operative procedure for the restorative treatment of dental patients. Caries Res. 2003;37:360-364. doi: 10.1159/000072168.
  • 6. Eberhard J, Zahl A, Dommisch H, Winter J, Acil Y, Jepsen S. Heat shock induces the synthesis of the inflammatory mediator leukotriene B4 in human pulp cells. Int Endod J. 2005;38:882-888. doi: 10.1111/j.1365-2591.2005.01032.x.
  • 7. de Oliveira MT, de Freitas PM, de Paula Eduardo C, Ambrosio GM, Giannini M. Influence of Diamond Sono-Abrasion, Air-Abrasion and Er: YAG Laser Irradiation on Bonding of Different Adhesive Systems to Dentin. Eur J Dent. 2007;1:158-166. doi: 10.1055/S-0039-1698332.
  • 8. Mahdi M, Haidar A. Evaluation of the Efficacy of Caries Removal Using Papain Gel (Brix 3000) and Smart Preparation Bur(in vivo Comparative Study). J Pharm Sci & Res. 2019;11(2):444-449. https://www.jpsr.pharmainfo.in/Documents/Volumes/vol11issue02/jpsr11021933.pdf
  • 9. Lennon ÁM, Attin T, Martens S, Buchalla W. Fluorescence-aided caries excavation (FACE), caries detector, and conventional caries excavation in primary teeth. Pediatric Dent. 2009, 31: 316-319.
  • 10. Tassery H, Levallois B, Terrer E, Manton D, Otsuki M, Koubi S, Gugnani N, Panayotov I, Jacquot B, Cuisinier F. Use of new minimum intervention dentistry technologies in caries management. Australian Dent J. 2013; 58: 40-59.
  • 11. Kidd E, Ricketts D, Beighton D. Criteria for caries removal at the enamel-dentine junction: a clinical and microbiological study. British Dental J. 1996; 180: 287.
  • 12. Neves AdA, Coutinho E, De Munck J, Van Meerbeek B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: a micro-CT investigation. J Dent. 2011; 39: 154-162.
  • 13. Flückiger L, Waltimo T, Stich H, Lussi A. Comparison of chemomechanical caries removal using Carisolv™ or conventional hand excavation in deciduous teeth in vitro. J Dent. 2005; 33: 87-90.
  • 14. Nadanovsky P, Carneino FC, Souza DE, Mello F. Removal of caries using only hand instruments. A comparison of mechanical and chemo-mechanical methods. Caries Res. 2001; 35(5):384-9
  • 15. Reyes-Gasga J, Alcantara-Rodriguez C, Gonzalez-Trejo A, Madrigal-Colin A. Child, adult and aged human tooth enamel characterized by electrón microscopy. Acta Microscopica. 1997; 6: 24-38.
  • 16. Marshall Jr GW. Dentin: Dentin: microstructure and characterization. Quintessence Int. 1993 Sep;24(9):606-17
  • 17. Fosse G, Saele PK, Eide R. Numerical density and distributional pattern of dentin tubules. Acta Odontol Scan. 1992; 50: 201-210.
  • 18. Hosoya Y, Marshall S, Watanabe L, Marshall G. Microhardness of carious deciduous dentin. Oper Dent. 2000; 25: 81-89.
  • 19. Marshall Jr GW, Marshall SJ, Kinney JH, Balooch M. The dentin substrate: structure and properties related to bonding. J Dent. 1997;25: 441-458.
  • 20. Boob AR, Manjula M, Reddy ER, Srilaxmi N, Rani T. Evaluation of the efficiency and effectiveness of three minimally invasive methods of caries removal: an in vitro study. Int J Clin Pediatr Dent. 2014; 7: 11.
  • 21. Hamama H, Yiu C, Burrow MF, King N. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust Dent J. 2013; 58: 283-292.
  • 22. Lennon AM, Buchalla W, Switalski L, Stookey GK (2002) Residualcaries detection using visible fluorescence. Caries Res. 2002; 36(5):315-319
  • 23. Lennon AM. Fluorescence-aided caries excavation (FACE) compared to conventional method. Oper Dent.2003;28:341–345
  • 24. Lennon AM, Buchalla W, Rassner B, Becker K, Attin T (2006) Efficiency of four caries excavation methods compared. Oper Dent.2006; 31:551–555 29.
  • 25. Lennon AM, Attin T, Buchalla W (2007) Quantity of remaining bacteria and cavity size after excavation with FACE, caries detector dye and conventional excavation in vitro. Oper Dent. 2007;32:236–241
  • 26. Marshall G, Habelitz S, Gallagher R, Balooch M, Balooch G, Marshall S. Nanomechanical properties of hydrated carious human dentin. J Dent R. 2001; 80: 1768-1771.
  • 27. Erhardt MCG, Toledano M, Osorio R, Pimenta LA. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater. 2008;24: 786-798.
  • 28. Aggarwal V, Singla M, Yadav S, Yadav H. The effect of caries excavation methods on the bond strength of etch‐and‐rinse and self‐etch adhesives to caries affected dentine. Aust Dent J. 2013; 58: 454-460.
  • 29. Tripathi RS, Pathak K. Optimization studies on development and evaluation of papain-based in situ gelling system for chemomechanical caries removal. Pharm Dev Technol. 2015; 20: 801-811
  • 30. Neves AdA, Coutinho E, Cardoso MV, De Munck J, Van Meerbeek B. Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques. Dental Mater. 2011; 27: 552-562.
  • 31. Hamama H, Yiu C, Burrow MF, King N. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust Dent J. 2013; 58: 283-292.
  • 32. Pires Corrêa FN, Oliveira Rocha Rd, Rodrigues Filho LE, Muench A, Delgado Rodrigues CRM. Chemical versus conventional caries removal techniques in primary teeth: a microhardness study. Journal of Clinical Pediatric Dentistry, 2007, 31: 187-192.
  • 33. Meller C, Welk A, Zeligowski T, Splieth C. Comparison of dentin caries excavation with polymer and conventional tungsten carbide burs. Quint Int. 2007;38(7):565-9.
  • 34. Dammaschke T, Rodenberg T, Schäfer E, Ott K. Efficiency of the polymer bur SmartPrep compared with conventional tungsten carbide bud bur in dentin caries excavation. Oper Dent.2006, 31: 256-260.
  • 35. Prabhakar A, Kiran NK. Clinical evaluation of polyamide polymer burs for selective carious dentin removal. J Contemp Dent Pract. 2009; 10: 26-34.
  • 36. Leontiev W, Magni E, Dettwiler C, Meller C, Weiger R, Connert T. Clinical Oral Invest. 2021 25:5189–5196. DOI: 10.1007/s00784-021-03826-7.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Restoratif Diş Tedavisi
Bölüm Araştırma Makalesi
Yazarlar

Nurcan Özakar Bu kişi benim

Selin Nacak Doğuş Bu kişi benim

Yayımlanma Tarihi 28 Temmuz 2024
Gönderilme Tarihi 6 Nisan 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

AMA Özakar N, Nacak Doğuş S. The Effect Of Different Caries Removal Methods On The Surface Hardness and Micro-tensile Bond Strength. Curr Res Dent Sci. Temmuz 2024;34(3):198-203. doi:10.17567/currresdentsci.1520453

Current Research in Dental Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

29936