Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 34 Sayı: 2, 1169 - 1182, 24.10.2025
https://doi.org/10.35379/cusosbil.1519867

Öz

Kaynakça

  • Aboul-Dahab, K. M. (2020). Logistics performance index (LPI) and insights on the logistics performance improvement in the Arabian region. The International Journal of Business Management and Technology, 4(2), 1-15.
  • Acar, M. F. (2021). Lojistik performans indeks: Türkiye-Avrupa Birliği karşılaştırması. International journal of advances in engineering and pure sciences, 33(3), 422-428.
  • Arman, K., & Organ, A. (2023). AB’ye üye ve aday ülkelerin lojistik performanslarının Merec ve Cocoso yöntemleri ile değerlendirilmesi. Uluslararası Ticaret ve Ekonomi Araştırmaları Dergisi, 7(2), 36-46.
  • Arvis, J. F., Ojala, L., Wiederer, C., Shepherd, B., Raj, A., Dairabayeva, K., & Kiiski, T. (2018). Connecting to compete 2018: Trade logistics in the global economy.
  • Avşar, İ.İ. (2023). Lojistik performans endeksine göre seçilmiş ülkelerin k-ortalamalar yöntemi ile kümelenmesi: Türkiye’nin durumu. Karadeniz Ekonomi Araştırmaları Dergisi, 4(1), 44-61.
  • Bazani, C.L., Pereira, J.M. & Leal, E.A. (2020). Logistics performance index: What is Brazil’s logistics performance in the international market. Int. J. Logistics Systems and Management, 37(1), 38–54. doi: https://doi.org/10.1504/IJLSM.2020.109658
  • Bayraktar, E., Eryarsoy, E., Kosanoglu, F., Acar, M. F., & Zaim, S. (2024). Unveiling the drivers of global logistics efficiency: insights from cross-country analysis. Sustainability, 16(7), 2683.
  • Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. (2014). NbClust: an R package for determining the relevant number of clusters in a data set, Journal of Statistical Software, 61, 1-36.
  • Croux, C., Gallopoulos, E., Van Aelst, S., & Zha, H. (2007). Machine Learning and Robust Data Mining. Computational Statistics & Data Analysis, 52(1), 151–154.
  • Cuesta-Albertos, J. A., & Fraiman, R. (2007). Impartial trimmed k-means for functional data. Computational Statistics & Data Analysis, 51(10), 4864-4877.
  • Danacı, T. & Nacar, R. (2017). Comparing the foreign trade and logistic performance of Turkey and EU members with cluster analysis. PressAcademia Procedia (PAP), 3, 31-36. doi: https://doi.org/10.17261/Pressacademia.2017.389
  • Döring, C., Lesot, M. J., & Kruse, R. (2006). Data analysis with fuzzy clustering methods. Computational Statistics & Data Analysis, 51(1), 192-214. doi: https://doi.org/10.1016/j.csda.2006.04.030
  • Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164.
  • Dorabiala, O., Kutz, J. N., & Aravkin, A. Y. (2022). Robust trimmed k-means. Pattern Recognition Letters, 161, 9-16.
  • Eren, H. & Ömürbek, N. (2021). OECD ülkelerinin lojistik performansları açısından kümelenmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 26(2), 153-166.
  • European Union. “Towards open and fair world-wide trade”. Erişim: 15 Nisan 2024. https://european-union.europa.eu/priorities-and-actions/actions-topic/trade_en.
  • Faria, R. N. D., Souza, C. S. D., & Vieira, J. G. V. (2015). Evaluation of logistic performance indexes of Brazil in the international trade. RAM. Revista de Administração Mackenzie, 16, 213-235.
  • Fritz, H., García-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An R package for a trimming approach to cluster analysis. Journal of Statistical Software, 47, 1-26.
  • Garcia-Escudero, L. A., & Gordaliza, A. (1999). Robustness properties of k means and trimmed k means. Journal of the American Statistical Association, 94(447), 956-969.
  • García-Escudero, L. A., Gordaliza, A., Matrán, C., & Mayo-Iscar, A. (2010). A review of robust clustering methods. Advances in Data Analysis and Classification, 4(2), 89-109. doi: 10.1007/s11634-010-0064-5.
  • García‐Escudero, L. A., & Mayo‐Iscar, A. (2024). Robust clustering based on trimming. Wiley Interdisciplinary Reviews: Computational Statistics, 16(4), e1658.
  • Giray, S., Yorulmaz, Ö., & Ergüt, Ö. (2016). Ülkelerin Gini Katsayısı, Göç, Suç Ve Mutluluk Değişkenleri Açısından Bulanik ve Dayanıklı Kümeleme Metotlari İle Sınıflandırılması. Journal Of Awareness, 1(2), 1-16.
  • Georgogiannis, A. (2016). Robust k-means: a theoretical revisit. Advances in Neural Information Processing Systems, 29.
  • Gelbard, R., Goldman, O., & Spiegler, I. (2007). Investigating diversity of clustering methods: An empirical comparison. Data & Knowledge Engineering, 63(1), 155-166. doi: https://doi.org/10.1016/j.datak.2007.01.002
  • Göçer, A., Özpeynirci, Ö., & Semiz, M. (2022). Logistics performance index-driven policy development: An application to Turkey. Transport policy, 124, 20-32. doi: https://doi.org/10.1016/j.tranpol.2021.03.007.
  • Gubu, L., & Rosadi, D. (2021). A new approach for robust mean-variance portfolio selection using trimmed k-means clustering. Industrial Engineering & Management Systems, 20(4), 782-794.
  • Işik, Ö., Aydin, Y., & Koşarolu, S. (2020). The Assessment of the logistics performance index of CEE countries with the new combination of SV and MABAC methods. LogForum, 16(4), 549-559. doi: http://doi.org/10.17270/J.LOG.2020.504.
  • Insolia, L., & Perrotta, D. (2024). Fast and robust clustering of general-shaped structures with tk-merge. International Journal of Approximate Reasoning, 168, 109152.
  • Ju, M., Mirović, I., Petrović, V., Erceg, Ž., & Stević, Ž. (2024). A Novel Approach for the Assessment of Logistics Performance Index of EU Countries. Economics, 18(1), 20220074.
  • Kabak, Ö., Ülengin, F., & Ekici, Ş. Ö. (2018). Connecting logistics performance to export: A scenario-based approach. Research in Transportation Economics, 70, 69-82. doi: https://doi.org/10.1016/j.retrec.2018.05.007
  • Kassambara, A., & Mundt, F. (2017). “Package ‘factoextra’”, Extract and Visualize the Results of Multivariate Data Analyses, 76.
  • Liu, J., Yuan, C., Hafeez, M., & Yuan, Q. (2018). The Relationship between environment and logistics performance: Evidence from Asian countries. Journal of Cleaner Production, 204, 282-291. doi: https://doi.org/10.1016/j.jclepro.2018.08.310
  • Martí, L., Martín, J. C., & Puertas, R. (2017). A DEA-Logistics performance index. Journal of Applied Economics, 20(1), 169–192. doi: 10.1016/s1514-0326(17)30008-9
  • Mercangöz, A. B., Yıldırım, B. F., & Kuzu Yıldırım, S. (2020). Time period based COPRAS-G method: Application on the logistics performance index. LogForum, 16(2), 239-250. doi: http://doi.org/10.17270/J.LOG.2020.432.
  • Orhan, M. (2019). Türkiye ile Avrupa Birliği ülkelerinin lojistik performanslarının Entropi ağırlıklı EDAS yöntemiyle karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, (17), 1222-1238.
  • Pehlivan, P., Aslan, A. I., David, S., & Bacalum, S. (2024). Determination of Logistics Performance of G20 Countries Using Quantitative Decision-Making Techniques. Sustainability, 16(5), 1852.
  • Rafflesia, U., Rosadi, D., Sari, D. P., & Novianti, P. (2025). Analysis of Seismic Data in Sumatra using Robust K-Means Clustering. Journal of Applied Data Sciences, 6(1), 391-404.
  • Roy, V., Mitra, S. K., Chattopadhyay, M., & Sahay, B. S. (2018). Facilitating the extraction of extended insights on logistics performance from the logistics performance index dataset: A two-stage methodological framework and its application. Research in Transportation Business & Management, 28, 23-32. doi: http://dx.doi.org/10.1016/j.rtbm.2017.10.001
  • Tayal, M. A., & Raghuwanshi, M. M. (2010). Review on various clustering methods for the image data. Journal of Emerging Trends in Computing and Information Sciences, 2, 34-38.
  • Tekin, B. (2015). Temel Sağlık Göstergeleri Açısından Türkiye’deki İllerin Gruplandırılması: Bir Kümeleme Analizi Uygulaması. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 389-416.
  • Tekin, B. (2018). Ward, K-Ortalamalar ve İki Adımlı Kümeleme Analizi Yöntemleri ile Finansal Göstergeler Temelinde Hisse Senedi Tercihi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(40), 401-436.
  • Tekin, B. (2020). Covıd-19 Pandemisi Döneminde Ülkelerin Covıd-19, Sağlık ve Finansal Göstergeler Bağlamında Sınıflandırılması: Hiyerarşik Kümeleme Analizi. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 5(2), 336-349.
  • Ulkhaq, M. M. (2023). Clustering countries according to the logistics performance index. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 10(1), 1010-1018. doi: https://doi.org/10.35957/jatisi.v10i1.4755
  • Yıldız, A., Aydoğan, K., & Kartum, G. (2020). Türkiye’nin uluslararası lojistik performans endeksindeki konumunun kümeleme analizi ile araştırılması. Turkish Studies-Social, 15(3), 1659-1679.
  • Yorulmaz, Ö. (2016). Dayanıklı istatistiksel yöntemler ve R uygulamaları. 1. Baskı, Beta Yayınları.
  • Yuan, J., Li, J., & Hao, J. (2023). A dynamic clustering ensemble learning approach for crude oil price forecasting. Engineering Applications of Artificial Intelligence, 123, 106408.
  • Yu, M. M., & Rakshit, I. (2025). An alternative assessment approach to global logistics performance evaluation: Common weight H‐DEA approach. International Transactions in Operational Research, 32(2), 839-862.

Yıl 2025, Cilt: 34 Sayı: 2, 1169 - 1182, 24.10.2025
https://doi.org/10.35379/cusosbil.1519867

Öz

Kaynakça

  • Aboul-Dahab, K. M. (2020). Logistics performance index (LPI) and insights on the logistics performance improvement in the Arabian region. The International Journal of Business Management and Technology, 4(2), 1-15.
  • Acar, M. F. (2021). Lojistik performans indeks: Türkiye-Avrupa Birliği karşılaştırması. International journal of advances in engineering and pure sciences, 33(3), 422-428.
  • Arman, K., & Organ, A. (2023). AB’ye üye ve aday ülkelerin lojistik performanslarının Merec ve Cocoso yöntemleri ile değerlendirilmesi. Uluslararası Ticaret ve Ekonomi Araştırmaları Dergisi, 7(2), 36-46.
  • Arvis, J. F., Ojala, L., Wiederer, C., Shepherd, B., Raj, A., Dairabayeva, K., & Kiiski, T. (2018). Connecting to compete 2018: Trade logistics in the global economy.
  • Avşar, İ.İ. (2023). Lojistik performans endeksine göre seçilmiş ülkelerin k-ortalamalar yöntemi ile kümelenmesi: Türkiye’nin durumu. Karadeniz Ekonomi Araştırmaları Dergisi, 4(1), 44-61.
  • Bazani, C.L., Pereira, J.M. & Leal, E.A. (2020). Logistics performance index: What is Brazil’s logistics performance in the international market. Int. J. Logistics Systems and Management, 37(1), 38–54. doi: https://doi.org/10.1504/IJLSM.2020.109658
  • Bayraktar, E., Eryarsoy, E., Kosanoglu, F., Acar, M. F., & Zaim, S. (2024). Unveiling the drivers of global logistics efficiency: insights from cross-country analysis. Sustainability, 16(7), 2683.
  • Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. (2014). NbClust: an R package for determining the relevant number of clusters in a data set, Journal of Statistical Software, 61, 1-36.
  • Croux, C., Gallopoulos, E., Van Aelst, S., & Zha, H. (2007). Machine Learning and Robust Data Mining. Computational Statistics & Data Analysis, 52(1), 151–154.
  • Cuesta-Albertos, J. A., & Fraiman, R. (2007). Impartial trimmed k-means for functional data. Computational Statistics & Data Analysis, 51(10), 4864-4877.
  • Danacı, T. & Nacar, R. (2017). Comparing the foreign trade and logistic performance of Turkey and EU members with cluster analysis. PressAcademia Procedia (PAP), 3, 31-36. doi: https://doi.org/10.17261/Pressacademia.2017.389
  • Döring, C., Lesot, M. J., & Kruse, R. (2006). Data analysis with fuzzy clustering methods. Computational Statistics & Data Analysis, 51(1), 192-214. doi: https://doi.org/10.1016/j.csda.2006.04.030
  • Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164.
  • Dorabiala, O., Kutz, J. N., & Aravkin, A. Y. (2022). Robust trimmed k-means. Pattern Recognition Letters, 161, 9-16.
  • Eren, H. & Ömürbek, N. (2021). OECD ülkelerinin lojistik performansları açısından kümelenmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 26(2), 153-166.
  • European Union. “Towards open and fair world-wide trade”. Erişim: 15 Nisan 2024. https://european-union.europa.eu/priorities-and-actions/actions-topic/trade_en.
  • Faria, R. N. D., Souza, C. S. D., & Vieira, J. G. V. (2015). Evaluation of logistic performance indexes of Brazil in the international trade. RAM. Revista de Administração Mackenzie, 16, 213-235.
  • Fritz, H., García-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An R package for a trimming approach to cluster analysis. Journal of Statistical Software, 47, 1-26.
  • Garcia-Escudero, L. A., & Gordaliza, A. (1999). Robustness properties of k means and trimmed k means. Journal of the American Statistical Association, 94(447), 956-969.
  • García-Escudero, L. A., Gordaliza, A., Matrán, C., & Mayo-Iscar, A. (2010). A review of robust clustering methods. Advances in Data Analysis and Classification, 4(2), 89-109. doi: 10.1007/s11634-010-0064-5.
  • García‐Escudero, L. A., & Mayo‐Iscar, A. (2024). Robust clustering based on trimming. Wiley Interdisciplinary Reviews: Computational Statistics, 16(4), e1658.
  • Giray, S., Yorulmaz, Ö., & Ergüt, Ö. (2016). Ülkelerin Gini Katsayısı, Göç, Suç Ve Mutluluk Değişkenleri Açısından Bulanik ve Dayanıklı Kümeleme Metotlari İle Sınıflandırılması. Journal Of Awareness, 1(2), 1-16.
  • Georgogiannis, A. (2016). Robust k-means: a theoretical revisit. Advances in Neural Information Processing Systems, 29.
  • Gelbard, R., Goldman, O., & Spiegler, I. (2007). Investigating diversity of clustering methods: An empirical comparison. Data & Knowledge Engineering, 63(1), 155-166. doi: https://doi.org/10.1016/j.datak.2007.01.002
  • Göçer, A., Özpeynirci, Ö., & Semiz, M. (2022). Logistics performance index-driven policy development: An application to Turkey. Transport policy, 124, 20-32. doi: https://doi.org/10.1016/j.tranpol.2021.03.007.
  • Gubu, L., & Rosadi, D. (2021). A new approach for robust mean-variance portfolio selection using trimmed k-means clustering. Industrial Engineering & Management Systems, 20(4), 782-794.
  • Işik, Ö., Aydin, Y., & Koşarolu, S. (2020). The Assessment of the logistics performance index of CEE countries with the new combination of SV and MABAC methods. LogForum, 16(4), 549-559. doi: http://doi.org/10.17270/J.LOG.2020.504.
  • Insolia, L., & Perrotta, D. (2024). Fast and robust clustering of general-shaped structures with tk-merge. International Journal of Approximate Reasoning, 168, 109152.
  • Ju, M., Mirović, I., Petrović, V., Erceg, Ž., & Stević, Ž. (2024). A Novel Approach for the Assessment of Logistics Performance Index of EU Countries. Economics, 18(1), 20220074.
  • Kabak, Ö., Ülengin, F., & Ekici, Ş. Ö. (2018). Connecting logistics performance to export: A scenario-based approach. Research in Transportation Economics, 70, 69-82. doi: https://doi.org/10.1016/j.retrec.2018.05.007
  • Kassambara, A., & Mundt, F. (2017). “Package ‘factoextra’”, Extract and Visualize the Results of Multivariate Data Analyses, 76.
  • Liu, J., Yuan, C., Hafeez, M., & Yuan, Q. (2018). The Relationship between environment and logistics performance: Evidence from Asian countries. Journal of Cleaner Production, 204, 282-291. doi: https://doi.org/10.1016/j.jclepro.2018.08.310
  • Martí, L., Martín, J. C., & Puertas, R. (2017). A DEA-Logistics performance index. Journal of Applied Economics, 20(1), 169–192. doi: 10.1016/s1514-0326(17)30008-9
  • Mercangöz, A. B., Yıldırım, B. F., & Kuzu Yıldırım, S. (2020). Time period based COPRAS-G method: Application on the logistics performance index. LogForum, 16(2), 239-250. doi: http://doi.org/10.17270/J.LOG.2020.432.
  • Orhan, M. (2019). Türkiye ile Avrupa Birliği ülkelerinin lojistik performanslarının Entropi ağırlıklı EDAS yöntemiyle karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, (17), 1222-1238.
  • Pehlivan, P., Aslan, A. I., David, S., & Bacalum, S. (2024). Determination of Logistics Performance of G20 Countries Using Quantitative Decision-Making Techniques. Sustainability, 16(5), 1852.
  • Rafflesia, U., Rosadi, D., Sari, D. P., & Novianti, P. (2025). Analysis of Seismic Data in Sumatra using Robust K-Means Clustering. Journal of Applied Data Sciences, 6(1), 391-404.
  • Roy, V., Mitra, S. K., Chattopadhyay, M., & Sahay, B. S. (2018). Facilitating the extraction of extended insights on logistics performance from the logistics performance index dataset: A two-stage methodological framework and its application. Research in Transportation Business & Management, 28, 23-32. doi: http://dx.doi.org/10.1016/j.rtbm.2017.10.001
  • Tayal, M. A., & Raghuwanshi, M. M. (2010). Review on various clustering methods for the image data. Journal of Emerging Trends in Computing and Information Sciences, 2, 34-38.
  • Tekin, B. (2015). Temel Sağlık Göstergeleri Açısından Türkiye’deki İllerin Gruplandırılması: Bir Kümeleme Analizi Uygulaması. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 389-416.
  • Tekin, B. (2018). Ward, K-Ortalamalar ve İki Adımlı Kümeleme Analizi Yöntemleri ile Finansal Göstergeler Temelinde Hisse Senedi Tercihi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(40), 401-436.
  • Tekin, B. (2020). Covıd-19 Pandemisi Döneminde Ülkelerin Covıd-19, Sağlık ve Finansal Göstergeler Bağlamında Sınıflandırılması: Hiyerarşik Kümeleme Analizi. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 5(2), 336-349.
  • Ulkhaq, M. M. (2023). Clustering countries according to the logistics performance index. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 10(1), 1010-1018. doi: https://doi.org/10.35957/jatisi.v10i1.4755
  • Yıldız, A., Aydoğan, K., & Kartum, G. (2020). Türkiye’nin uluslararası lojistik performans endeksindeki konumunun kümeleme analizi ile araştırılması. Turkish Studies-Social, 15(3), 1659-1679.
  • Yorulmaz, Ö. (2016). Dayanıklı istatistiksel yöntemler ve R uygulamaları. 1. Baskı, Beta Yayınları.
  • Yuan, J., Li, J., & Hao, J. (2023). A dynamic clustering ensemble learning approach for crude oil price forecasting. Engineering Applications of Artificial Intelligence, 123, 106408.
  • Yu, M. M., & Rakshit, I. (2025). An alternative assessment approach to global logistics performance evaluation: Common weight H‐DEA approach. International Transactions in Operational Research, 32(2), 839-862.

LOJİSTİK PERFORMANS ENDEKSİNE GÖRE AVRUPA BİRLİĞİNE ÜYE VE ADAY ÜLKELERİN KÜMELENMESİ

Yıl 2025, Cilt: 34 Sayı: 2, 1169 - 1182, 24.10.2025
https://doi.org/10.35379/cusosbil.1519867

Öz

Lojistik ve taşımacılık, uluslararası ticari ilişkilerde giderek daha önemli bir rol oynamaktadır. Avrupa Birliği dünyanın en dışa dönük ekonomilerinden biri olmasının yanında dünyanın en büyük tek pazar alanıdır. Üyeleri arasındaki serbest ticaret, AB'nin kuruluş ilkelerinden biridir ve aynı zamanda dünya ticaretine de açıktır. Dünya Bankası, ülkelerin lojistik performanslarını etkileyen değişkenleri, güçlü ve zayıf yönlerini belirlemelerine yardımcı olmak amacıyla ilk kez 2007 yılında Lojistik Performans Endeksi'ni (LPI) yayınlamıştır. Bu çalışmada Dünya Bankası’nın 2023 yılında yayınlamış olduğu Lojistik Performans Endeksi’nin altı kriteri (uluslararası sevkiyat, takip ve izleme, gümrükler, hizmet kalitesi, altyapı ve zamanlama) kullanılarak Avrupa Birliğine üye 27 ülke ve 8 aday ülkenin lojistik performansları açısından benzer ülkelerin belirlenmesi amaçlanmıştır. Benzer ülkelerin belirlenmesi için kümeleme yöntemlerinden aykırı gözlemlere karşı dirençli olan k kırpılmış ortalamalar yöntemi kullanılmıştır ve yöntem R Studio'da uygulanmıştır. K-kırpılmış ortalamalar analiz sonucuna göre küme sayısı 3 olarak belirlenmiş ve kümelerde sırasıyla 18, 11 ve 5 ülke yer almıştır. Arnavutluk aykırı gözlem olarak belirlenmiştir.

Kaynakça

  • Aboul-Dahab, K. M. (2020). Logistics performance index (LPI) and insights on the logistics performance improvement in the Arabian region. The International Journal of Business Management and Technology, 4(2), 1-15.
  • Acar, M. F. (2021). Lojistik performans indeks: Türkiye-Avrupa Birliği karşılaştırması. International journal of advances in engineering and pure sciences, 33(3), 422-428.
  • Arman, K., & Organ, A. (2023). AB’ye üye ve aday ülkelerin lojistik performanslarının Merec ve Cocoso yöntemleri ile değerlendirilmesi. Uluslararası Ticaret ve Ekonomi Araştırmaları Dergisi, 7(2), 36-46.
  • Arvis, J. F., Ojala, L., Wiederer, C., Shepherd, B., Raj, A., Dairabayeva, K., & Kiiski, T. (2018). Connecting to compete 2018: Trade logistics in the global economy.
  • Avşar, İ.İ. (2023). Lojistik performans endeksine göre seçilmiş ülkelerin k-ortalamalar yöntemi ile kümelenmesi: Türkiye’nin durumu. Karadeniz Ekonomi Araştırmaları Dergisi, 4(1), 44-61.
  • Bazani, C.L., Pereira, J.M. & Leal, E.A. (2020). Logistics performance index: What is Brazil’s logistics performance in the international market. Int. J. Logistics Systems and Management, 37(1), 38–54. doi: https://doi.org/10.1504/IJLSM.2020.109658
  • Bayraktar, E., Eryarsoy, E., Kosanoglu, F., Acar, M. F., & Zaim, S. (2024). Unveiling the drivers of global logistics efficiency: insights from cross-country analysis. Sustainability, 16(7), 2683.
  • Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. (2014). NbClust: an R package for determining the relevant number of clusters in a data set, Journal of Statistical Software, 61, 1-36.
  • Croux, C., Gallopoulos, E., Van Aelst, S., & Zha, H. (2007). Machine Learning and Robust Data Mining. Computational Statistics & Data Analysis, 52(1), 151–154.
  • Cuesta-Albertos, J. A., & Fraiman, R. (2007). Impartial trimmed k-means for functional data. Computational Statistics & Data Analysis, 51(10), 4864-4877.
  • Danacı, T. & Nacar, R. (2017). Comparing the foreign trade and logistic performance of Turkey and EU members with cluster analysis. PressAcademia Procedia (PAP), 3, 31-36. doi: https://doi.org/10.17261/Pressacademia.2017.389
  • Döring, C., Lesot, M. J., & Kruse, R. (2006). Data analysis with fuzzy clustering methods. Computational Statistics & Data Analysis, 51(1), 192-214. doi: https://doi.org/10.1016/j.csda.2006.04.030
  • Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164.
  • Dorabiala, O., Kutz, J. N., & Aravkin, A. Y. (2022). Robust trimmed k-means. Pattern Recognition Letters, 161, 9-16.
  • Eren, H. & Ömürbek, N. (2021). OECD ülkelerinin lojistik performansları açısından kümelenmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 26(2), 153-166.
  • European Union. “Towards open and fair world-wide trade”. Erişim: 15 Nisan 2024. https://european-union.europa.eu/priorities-and-actions/actions-topic/trade_en.
  • Faria, R. N. D., Souza, C. S. D., & Vieira, J. G. V. (2015). Evaluation of logistic performance indexes of Brazil in the international trade. RAM. Revista de Administração Mackenzie, 16, 213-235.
  • Fritz, H., García-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An R package for a trimming approach to cluster analysis. Journal of Statistical Software, 47, 1-26.
  • Garcia-Escudero, L. A., & Gordaliza, A. (1999). Robustness properties of k means and trimmed k means. Journal of the American Statistical Association, 94(447), 956-969.
  • García-Escudero, L. A., Gordaliza, A., Matrán, C., & Mayo-Iscar, A. (2010). A review of robust clustering methods. Advances in Data Analysis and Classification, 4(2), 89-109. doi: 10.1007/s11634-010-0064-5.
  • García‐Escudero, L. A., & Mayo‐Iscar, A. (2024). Robust clustering based on trimming. Wiley Interdisciplinary Reviews: Computational Statistics, 16(4), e1658.
  • Giray, S., Yorulmaz, Ö., & Ergüt, Ö. (2016). Ülkelerin Gini Katsayısı, Göç, Suç Ve Mutluluk Değişkenleri Açısından Bulanik ve Dayanıklı Kümeleme Metotlari İle Sınıflandırılması. Journal Of Awareness, 1(2), 1-16.
  • Georgogiannis, A. (2016). Robust k-means: a theoretical revisit. Advances in Neural Information Processing Systems, 29.
  • Gelbard, R., Goldman, O., & Spiegler, I. (2007). Investigating diversity of clustering methods: An empirical comparison. Data & Knowledge Engineering, 63(1), 155-166. doi: https://doi.org/10.1016/j.datak.2007.01.002
  • Göçer, A., Özpeynirci, Ö., & Semiz, M. (2022). Logistics performance index-driven policy development: An application to Turkey. Transport policy, 124, 20-32. doi: https://doi.org/10.1016/j.tranpol.2021.03.007.
  • Gubu, L., & Rosadi, D. (2021). A new approach for robust mean-variance portfolio selection using trimmed k-means clustering. Industrial Engineering & Management Systems, 20(4), 782-794.
  • Işik, Ö., Aydin, Y., & Koşarolu, S. (2020). The Assessment of the logistics performance index of CEE countries with the new combination of SV and MABAC methods. LogForum, 16(4), 549-559. doi: http://doi.org/10.17270/J.LOG.2020.504.
  • Insolia, L., & Perrotta, D. (2024). Fast and robust clustering of general-shaped structures with tk-merge. International Journal of Approximate Reasoning, 168, 109152.
  • Ju, M., Mirović, I., Petrović, V., Erceg, Ž., & Stević, Ž. (2024). A Novel Approach for the Assessment of Logistics Performance Index of EU Countries. Economics, 18(1), 20220074.
  • Kabak, Ö., Ülengin, F., & Ekici, Ş. Ö. (2018). Connecting logistics performance to export: A scenario-based approach. Research in Transportation Economics, 70, 69-82. doi: https://doi.org/10.1016/j.retrec.2018.05.007
  • Kassambara, A., & Mundt, F. (2017). “Package ‘factoextra’”, Extract and Visualize the Results of Multivariate Data Analyses, 76.
  • Liu, J., Yuan, C., Hafeez, M., & Yuan, Q. (2018). The Relationship between environment and logistics performance: Evidence from Asian countries. Journal of Cleaner Production, 204, 282-291. doi: https://doi.org/10.1016/j.jclepro.2018.08.310
  • Martí, L., Martín, J. C., & Puertas, R. (2017). A DEA-Logistics performance index. Journal of Applied Economics, 20(1), 169–192. doi: 10.1016/s1514-0326(17)30008-9
  • Mercangöz, A. B., Yıldırım, B. F., & Kuzu Yıldırım, S. (2020). Time period based COPRAS-G method: Application on the logistics performance index. LogForum, 16(2), 239-250. doi: http://doi.org/10.17270/J.LOG.2020.432.
  • Orhan, M. (2019). Türkiye ile Avrupa Birliği ülkelerinin lojistik performanslarının Entropi ağırlıklı EDAS yöntemiyle karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, (17), 1222-1238.
  • Pehlivan, P., Aslan, A. I., David, S., & Bacalum, S. (2024). Determination of Logistics Performance of G20 Countries Using Quantitative Decision-Making Techniques. Sustainability, 16(5), 1852.
  • Rafflesia, U., Rosadi, D., Sari, D. P., & Novianti, P. (2025). Analysis of Seismic Data in Sumatra using Robust K-Means Clustering. Journal of Applied Data Sciences, 6(1), 391-404.
  • Roy, V., Mitra, S. K., Chattopadhyay, M., & Sahay, B. S. (2018). Facilitating the extraction of extended insights on logistics performance from the logistics performance index dataset: A two-stage methodological framework and its application. Research in Transportation Business & Management, 28, 23-32. doi: http://dx.doi.org/10.1016/j.rtbm.2017.10.001
  • Tayal, M. A., & Raghuwanshi, M. M. (2010). Review on various clustering methods for the image data. Journal of Emerging Trends in Computing and Information Sciences, 2, 34-38.
  • Tekin, B. (2015). Temel Sağlık Göstergeleri Açısından Türkiye’deki İllerin Gruplandırılması: Bir Kümeleme Analizi Uygulaması. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 389-416.
  • Tekin, B. (2018). Ward, K-Ortalamalar ve İki Adımlı Kümeleme Analizi Yöntemleri ile Finansal Göstergeler Temelinde Hisse Senedi Tercihi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(40), 401-436.
  • Tekin, B. (2020). Covıd-19 Pandemisi Döneminde Ülkelerin Covıd-19, Sağlık ve Finansal Göstergeler Bağlamında Sınıflandırılması: Hiyerarşik Kümeleme Analizi. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 5(2), 336-349.
  • Ulkhaq, M. M. (2023). Clustering countries according to the logistics performance index. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 10(1), 1010-1018. doi: https://doi.org/10.35957/jatisi.v10i1.4755
  • Yıldız, A., Aydoğan, K., & Kartum, G. (2020). Türkiye’nin uluslararası lojistik performans endeksindeki konumunun kümeleme analizi ile araştırılması. Turkish Studies-Social, 15(3), 1659-1679.
  • Yorulmaz, Ö. (2016). Dayanıklı istatistiksel yöntemler ve R uygulamaları. 1. Baskı, Beta Yayınları.
  • Yuan, J., Li, J., & Hao, J. (2023). A dynamic clustering ensemble learning approach for crude oil price forecasting. Engineering Applications of Artificial Intelligence, 123, 106408.
  • Yu, M. M., & Rakshit, I. (2025). An alternative assessment approach to global logistics performance evaluation: Common weight H‐DEA approach. International Transactions in Operational Research, 32(2), 839-862.

CLUSTERING OF EUROPEAN UNION MEMBER AND CANDIDATE COUNTRIES ACCORDING TO THE LOGISTICS PERFORMANCE INDEX

Yıl 2025, Cilt: 34 Sayı: 2, 1169 - 1182, 24.10.2025
https://doi.org/10.35379/cusosbil.1519867

Öz

Logistics and transportation play an increasingly important role in international trade relations. The European Union is one of the world's most outward oriented economies, as well as the world's largest single market area. Free trade among its members is one of the founding principles of the EU and it is also open to global trade. The World Bank first published the Logistics Performance Index (LPI) in 2007 to help countries determine the variables, that affect their logistics performance as well as their strengths and weaknesses. In this study, it is purposed to adjust similar countries in terms of logistics performance among 27 EU member countries and 8 candidate countries using the six criteria of the Logistics Performance Index (customs, infrastructure, international shipments, service quality, tracking and tracing and timeliness) published by the World Bank in 2023. To determine similar countries, the k-trimmed means method, which is robust to outlier observations among clustering methods, was used and the method was applied in R Studio. In proportion to the K-trimmed means analysis result, the number of clusters was found to be 3, with the countries distributed across the clusters as 18, 11 and 5, respectively. Albania was identified as an outlier.

Kaynakça

  • Aboul-Dahab, K. M. (2020). Logistics performance index (LPI) and insights on the logistics performance improvement in the Arabian region. The International Journal of Business Management and Technology, 4(2), 1-15.
  • Acar, M. F. (2021). Lojistik performans indeks: Türkiye-Avrupa Birliği karşılaştırması. International journal of advances in engineering and pure sciences, 33(3), 422-428.
  • Arman, K., & Organ, A. (2023). AB’ye üye ve aday ülkelerin lojistik performanslarının Merec ve Cocoso yöntemleri ile değerlendirilmesi. Uluslararası Ticaret ve Ekonomi Araştırmaları Dergisi, 7(2), 36-46.
  • Arvis, J. F., Ojala, L., Wiederer, C., Shepherd, B., Raj, A., Dairabayeva, K., & Kiiski, T. (2018). Connecting to compete 2018: Trade logistics in the global economy.
  • Avşar, İ.İ. (2023). Lojistik performans endeksine göre seçilmiş ülkelerin k-ortalamalar yöntemi ile kümelenmesi: Türkiye’nin durumu. Karadeniz Ekonomi Araştırmaları Dergisi, 4(1), 44-61.
  • Bazani, C.L., Pereira, J.M. & Leal, E.A. (2020). Logistics performance index: What is Brazil’s logistics performance in the international market. Int. J. Logistics Systems and Management, 37(1), 38–54. doi: https://doi.org/10.1504/IJLSM.2020.109658
  • Bayraktar, E., Eryarsoy, E., Kosanoglu, F., Acar, M. F., & Zaim, S. (2024). Unveiling the drivers of global logistics efficiency: insights from cross-country analysis. Sustainability, 16(7), 2683.
  • Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. (2014). NbClust: an R package for determining the relevant number of clusters in a data set, Journal of Statistical Software, 61, 1-36.
  • Croux, C., Gallopoulos, E., Van Aelst, S., & Zha, H. (2007). Machine Learning and Robust Data Mining. Computational Statistics & Data Analysis, 52(1), 151–154.
  • Cuesta-Albertos, J. A., & Fraiman, R. (2007). Impartial trimmed k-means for functional data. Computational Statistics & Data Analysis, 51(10), 4864-4877.
  • Danacı, T. & Nacar, R. (2017). Comparing the foreign trade and logistic performance of Turkey and EU members with cluster analysis. PressAcademia Procedia (PAP), 3, 31-36. doi: https://doi.org/10.17261/Pressacademia.2017.389
  • Döring, C., Lesot, M. J., & Kruse, R. (2006). Data analysis with fuzzy clustering methods. Computational Statistics & Data Analysis, 51(1), 192-214. doi: https://doi.org/10.1016/j.csda.2006.04.030
  • Dash, C. S. K., Behera, A. K., Dehuri, S., & Ghosh, A. (2023). An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal, 6, 100164.
  • Dorabiala, O., Kutz, J. N., & Aravkin, A. Y. (2022). Robust trimmed k-means. Pattern Recognition Letters, 161, 9-16.
  • Eren, H. & Ömürbek, N. (2021). OECD ülkelerinin lojistik performansları açısından kümelenmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 26(2), 153-166.
  • European Union. “Towards open and fair world-wide trade”. Erişim: 15 Nisan 2024. https://european-union.europa.eu/priorities-and-actions/actions-topic/trade_en.
  • Faria, R. N. D., Souza, C. S. D., & Vieira, J. G. V. (2015). Evaluation of logistic performance indexes of Brazil in the international trade. RAM. Revista de Administração Mackenzie, 16, 213-235.
  • Fritz, H., García-Escudero, L. A., & Mayo-Iscar, A. (2012). tclust: An R package for a trimming approach to cluster analysis. Journal of Statistical Software, 47, 1-26.
  • Garcia-Escudero, L. A., & Gordaliza, A. (1999). Robustness properties of k means and trimmed k means. Journal of the American Statistical Association, 94(447), 956-969.
  • García-Escudero, L. A., Gordaliza, A., Matrán, C., & Mayo-Iscar, A. (2010). A review of robust clustering methods. Advances in Data Analysis and Classification, 4(2), 89-109. doi: 10.1007/s11634-010-0064-5.
  • García‐Escudero, L. A., & Mayo‐Iscar, A. (2024). Robust clustering based on trimming. Wiley Interdisciplinary Reviews: Computational Statistics, 16(4), e1658.
  • Giray, S., Yorulmaz, Ö., & Ergüt, Ö. (2016). Ülkelerin Gini Katsayısı, Göç, Suç Ve Mutluluk Değişkenleri Açısından Bulanik ve Dayanıklı Kümeleme Metotlari İle Sınıflandırılması. Journal Of Awareness, 1(2), 1-16.
  • Georgogiannis, A. (2016). Robust k-means: a theoretical revisit. Advances in Neural Information Processing Systems, 29.
  • Gelbard, R., Goldman, O., & Spiegler, I. (2007). Investigating diversity of clustering methods: An empirical comparison. Data & Knowledge Engineering, 63(1), 155-166. doi: https://doi.org/10.1016/j.datak.2007.01.002
  • Göçer, A., Özpeynirci, Ö., & Semiz, M. (2022). Logistics performance index-driven policy development: An application to Turkey. Transport policy, 124, 20-32. doi: https://doi.org/10.1016/j.tranpol.2021.03.007.
  • Gubu, L., & Rosadi, D. (2021). A new approach for robust mean-variance portfolio selection using trimmed k-means clustering. Industrial Engineering & Management Systems, 20(4), 782-794.
  • Işik, Ö., Aydin, Y., & Koşarolu, S. (2020). The Assessment of the logistics performance index of CEE countries with the new combination of SV and MABAC methods. LogForum, 16(4), 549-559. doi: http://doi.org/10.17270/J.LOG.2020.504.
  • Insolia, L., & Perrotta, D. (2024). Fast and robust clustering of general-shaped structures with tk-merge. International Journal of Approximate Reasoning, 168, 109152.
  • Ju, M., Mirović, I., Petrović, V., Erceg, Ž., & Stević, Ž. (2024). A Novel Approach for the Assessment of Logistics Performance Index of EU Countries. Economics, 18(1), 20220074.
  • Kabak, Ö., Ülengin, F., & Ekici, Ş. Ö. (2018). Connecting logistics performance to export: A scenario-based approach. Research in Transportation Economics, 70, 69-82. doi: https://doi.org/10.1016/j.retrec.2018.05.007
  • Kassambara, A., & Mundt, F. (2017). “Package ‘factoextra’”, Extract and Visualize the Results of Multivariate Data Analyses, 76.
  • Liu, J., Yuan, C., Hafeez, M., & Yuan, Q. (2018). The Relationship between environment and logistics performance: Evidence from Asian countries. Journal of Cleaner Production, 204, 282-291. doi: https://doi.org/10.1016/j.jclepro.2018.08.310
  • Martí, L., Martín, J. C., & Puertas, R. (2017). A DEA-Logistics performance index. Journal of Applied Economics, 20(1), 169–192. doi: 10.1016/s1514-0326(17)30008-9
  • Mercangöz, A. B., Yıldırım, B. F., & Kuzu Yıldırım, S. (2020). Time period based COPRAS-G method: Application on the logistics performance index. LogForum, 16(2), 239-250. doi: http://doi.org/10.17270/J.LOG.2020.432.
  • Orhan, M. (2019). Türkiye ile Avrupa Birliği ülkelerinin lojistik performanslarının Entropi ağırlıklı EDAS yöntemiyle karşılaştırılması. Avrupa Bilim ve Teknoloji Dergisi, (17), 1222-1238.
  • Pehlivan, P., Aslan, A. I., David, S., & Bacalum, S. (2024). Determination of Logistics Performance of G20 Countries Using Quantitative Decision-Making Techniques. Sustainability, 16(5), 1852.
  • Rafflesia, U., Rosadi, D., Sari, D. P., & Novianti, P. (2025). Analysis of Seismic Data in Sumatra using Robust K-Means Clustering. Journal of Applied Data Sciences, 6(1), 391-404.
  • Roy, V., Mitra, S. K., Chattopadhyay, M., & Sahay, B. S. (2018). Facilitating the extraction of extended insights on logistics performance from the logistics performance index dataset: A two-stage methodological framework and its application. Research in Transportation Business & Management, 28, 23-32. doi: http://dx.doi.org/10.1016/j.rtbm.2017.10.001
  • Tayal, M. A., & Raghuwanshi, M. M. (2010). Review on various clustering methods for the image data. Journal of Emerging Trends in Computing and Information Sciences, 2, 34-38.
  • Tekin, B. (2015). Temel Sağlık Göstergeleri Açısından Türkiye’deki İllerin Gruplandırılması: Bir Kümeleme Analizi Uygulaması. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(2), 389-416.
  • Tekin, B. (2018). Ward, K-Ortalamalar ve İki Adımlı Kümeleme Analizi Yöntemleri ile Finansal Göstergeler Temelinde Hisse Senedi Tercihi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(40), 401-436.
  • Tekin, B. (2020). Covıd-19 Pandemisi Döneminde Ülkelerin Covıd-19, Sağlık ve Finansal Göstergeler Bağlamında Sınıflandırılması: Hiyerarşik Kümeleme Analizi. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 5(2), 336-349.
  • Ulkhaq, M. M. (2023). Clustering countries according to the logistics performance index. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 10(1), 1010-1018. doi: https://doi.org/10.35957/jatisi.v10i1.4755
  • Yıldız, A., Aydoğan, K., & Kartum, G. (2020). Türkiye’nin uluslararası lojistik performans endeksindeki konumunun kümeleme analizi ile araştırılması. Turkish Studies-Social, 15(3), 1659-1679.
  • Yorulmaz, Ö. (2016). Dayanıklı istatistiksel yöntemler ve R uygulamaları. 1. Baskı, Beta Yayınları.
  • Yuan, J., Li, J., & Hao, J. (2023). A dynamic clustering ensemble learning approach for crude oil price forecasting. Engineering Applications of Artificial Intelligence, 123, 106408.
  • Yu, M. M., & Rakshit, I. (2025). An alternative assessment approach to global logistics performance evaluation: Common weight H‐DEA approach. International Transactions in Operational Research, 32(2), 839-862.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Pazarlama (Diğer)
Bölüm Makaleler
Yazarlar

Neslihan Akın Özdemir 0000-0002-6577-2525

Yayımlanma Tarihi 24 Ekim 2025
Gönderilme Tarihi 21 Temmuz 2024
Kabul Tarihi 9 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 34 Sayı: 2

Kaynak Göster

APA Akın Özdemir, N. (2025). LOJİSTİK PERFORMANS ENDEKSİNE GÖRE AVRUPA BİRLİĞİNE ÜYE VE ADAY ÜLKELERİN KÜMELENMESİ. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 34(2), 1169-1182. https://doi.org/10.35379/cusosbil.1519867