Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 34 Sayı: 2, 1599 - 1614, 24.10.2025
https://doi.org/10.35379/cusosbil.1679001

Öz

Kaynakça

  • Abanga, E. A., & Acquah, T. (2024). A Bibliometric Analysis of Global Research Trends in Artificial Intelligence from 2019 to 2023. Asian Journal of Research in Computer Science, 17(12), 220–233. https://doi.org/10.9734/ajrcos/2024/v17i12540
  • Aydın, N. (2024). Türkiye’de yapay zekâ alanında yapılan çalışmal arın bibliyometrik analizi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 27(52), 387-407. https://doi.org/10.31795/baunsobed.1545006
  • Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983. https://doi.org/10.3390/su151712983
  • Bitzenis, A., Koutsoupias, N., & Nosios, M. (2024). Artificial intelligence and machine learning in production efficiency enhancement and sustainable development: A comprehensive bibliometric review. Frontiers in Sustainability, 5, 1508647. https://doi.org/10.3389/frsus.2024.1508647
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
  • Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(43). https://doi.org/10.1186/s41239-023-00411-8
  • De Bellis, N. (2009). Bibliometrics and citation analysis: From the science citation index to cybermetrics. Scarecrow Press.
  • Gündüz, T., & Eren, F. (2024). Sağlıkta yapay zekâ: Bibliyometrik bir analiz. Sağlık Akademisyenleri Dergisi, 11(2), 277-285. https://doi.org/10.52880/sagakaderg.1420580
  • İkiel, C. & Yüksel, A. (2023). Coğrafi Bilgi Sistemleri ve Yapay Zeka Temelli Ulaşım Çalışmaları: Bibliyometrik Analiz Çalışması. In: Şahin, A. (ed.), Sosyal Bilimlerde Akademik Araştırma ve Değerlendirmeler- VI. Özgür Yayınları. DOI: https://doi.org/10.58830/ozgur.pub402.c1776
  • Kaplan, A. M., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
  • Keser Ateş, S., Kaleci, F., & Erdoğan, A. (2025). Artificial Intelligence In Education: A Bibliometric Analysis. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 7(1), 14-36.
  • Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global research on artificial intelligence from 1990–2014: Spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 66. https://doi.org/10.3390/ijgi5050066
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348–349.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Shi, L., Mai, Y., & Wu, Y. J. (2022). Digital Transformation: A Bibliometric Analysis. Journal of Organizational and End User Computing (JOEUC), 34(7), 1-20. https://doi.org/10.4018/JOEUC.302637
  • Tufekci, Z. (2017). Twitter and tear gas: The power and fragility of networked protest. Yale University Press.
  • TÜBİTAK. (2024). TÜBİTAK 2024 Yılı Faaliyet Raporu. https://tubitak.gov.tr/sites/default/files/2025-03/TUBITAK_2024_Yili_Faaliyet_Raporu.pdf
  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Vorontsova, A., Tarasenko, S., Duranowski, W., Durasiewicz, A., Soss, J., & Bilovol, A. (2025). A bibliometric analysis of the economic effects of using artificial intelligence and ChatGPT tools in higher education institutions. Problems and Perspectives in Management, 23(1), 101–114. https://doi.org/10.21511/ppm.23(1).2025.08
  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

Yıl 2025, Cilt: 34 Sayı: 2, 1599 - 1614, 24.10.2025
https://doi.org/10.35379/cusosbil.1679001

Öz

Kaynakça

  • Abanga, E. A., & Acquah, T. (2024). A Bibliometric Analysis of Global Research Trends in Artificial Intelligence from 2019 to 2023. Asian Journal of Research in Computer Science, 17(12), 220–233. https://doi.org/10.9734/ajrcos/2024/v17i12540
  • Aydın, N. (2024). Türkiye’de yapay zekâ alanında yapılan çalışmal arın bibliyometrik analizi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 27(52), 387-407. https://doi.org/10.31795/baunsobed.1545006
  • Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983. https://doi.org/10.3390/su151712983
  • Bitzenis, A., Koutsoupias, N., & Nosios, M. (2024). Artificial intelligence and machine learning in production efficiency enhancement and sustainable development: A comprehensive bibliometric review. Frontiers in Sustainability, 5, 1508647. https://doi.org/10.3389/frsus.2024.1508647
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
  • Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(43). https://doi.org/10.1186/s41239-023-00411-8
  • De Bellis, N. (2009). Bibliometrics and citation analysis: From the science citation index to cybermetrics. Scarecrow Press.
  • Gündüz, T., & Eren, F. (2024). Sağlıkta yapay zekâ: Bibliyometrik bir analiz. Sağlık Akademisyenleri Dergisi, 11(2), 277-285. https://doi.org/10.52880/sagakaderg.1420580
  • İkiel, C. & Yüksel, A. (2023). Coğrafi Bilgi Sistemleri ve Yapay Zeka Temelli Ulaşım Çalışmaları: Bibliyometrik Analiz Çalışması. In: Şahin, A. (ed.), Sosyal Bilimlerde Akademik Araştırma ve Değerlendirmeler- VI. Özgür Yayınları. DOI: https://doi.org/10.58830/ozgur.pub402.c1776
  • Kaplan, A. M., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
  • Keser Ateş, S., Kaleci, F., & Erdoğan, A. (2025). Artificial Intelligence In Education: A Bibliometric Analysis. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 7(1), 14-36.
  • Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global research on artificial intelligence from 1990–2014: Spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 66. https://doi.org/10.3390/ijgi5050066
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348–349.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Shi, L., Mai, Y., & Wu, Y. J. (2022). Digital Transformation: A Bibliometric Analysis. Journal of Organizational and End User Computing (JOEUC), 34(7), 1-20. https://doi.org/10.4018/JOEUC.302637
  • Tufekci, Z. (2017). Twitter and tear gas: The power and fragility of networked protest. Yale University Press.
  • TÜBİTAK. (2024). TÜBİTAK 2024 Yılı Faaliyet Raporu. https://tubitak.gov.tr/sites/default/files/2025-03/TUBITAK_2024_Yili_Faaliyet_Raporu.pdf
  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Vorontsova, A., Tarasenko, S., Duranowski, W., Durasiewicz, A., Soss, J., & Bilovol, A. (2025). A bibliometric analysis of the economic effects of using artificial intelligence and ChatGPT tools in higher education institutions. Problems and Perspectives in Management, 23(1), 101–114. https://doi.org/10.21511/ppm.23(1).2025.08
  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

DIGITALIZATION AND ARTIFICIAL INTELLIGENCE: A BIBLIOMETRIC ANALYSIS OF ACADEMIC PRODUCTION

Yıl 2025, Cilt: 34 Sayı: 2, 1599 - 1614, 24.10.2025
https://doi.org/10.35379/cusosbil.1679001

Öz

Digitalization and artificial intelligence (AI) are pivotal drivers of 21st-century technological transformation, profoundly influencing scientific productivity, industrial innovation, and societal paradigms. This study employs bibliometric analysis to examine 2,438 publications indexed in the Web of Science (WoS) Core Collection (2000–2025), systematically mapping academic productivity, thematic evolution, geographic distributions, and global collaboration networks in these domains. Visualized through VOSviewer, the results indicate a marked increase in publications, peaking at 633 in 2024, with Germany leading (384 publications, 5,177 citations), followed by significant contributions from China (312 publications, 4,415 citations) and Russia (256 publications). Research predominantly spans computer science (659 publications), engineering (489) and business economics (464) with emerging focus in environmental (152) and social sciences (86). Keyword analysis highlights "artificial intelligence," "digitalization," and "machine learning" as core concepts, underscoring an interdisciplinary research ecosystem. Co-authorship networks, comprising 12 clusters and 924 links, demonstrate robust global collaboration, with institutions like Lulea University of Technology (1,251 citations) at the forefront. This study provides a novel, comprehensive mapping of the interplay between digitalization and AI, elucidating their roles in fostering technological innovation, scientific networks, and societal transformation.

Kaynakça

  • Abanga, E. A., & Acquah, T. (2024). A Bibliometric Analysis of Global Research Trends in Artificial Intelligence from 2019 to 2023. Asian Journal of Research in Computer Science, 17(12), 220–233. https://doi.org/10.9734/ajrcos/2024/v17i12540
  • Aydın, N. (2024). Türkiye’de yapay zekâ alanında yapılan çalışmal arın bibliyometrik analizi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 27(52), 387-407. https://doi.org/10.31795/baunsobed.1545006
  • Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983. https://doi.org/10.3390/su151712983
  • Bitzenis, A., Koutsoupias, N., & Nosios, M. (2024). Artificial intelligence and machine learning in production efficiency enhancement and sustainable development: A comprehensive bibliometric review. Frontiers in Sustainability, 5, 1508647. https://doi.org/10.3389/frsus.2024.1508647
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
  • Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(43). https://doi.org/10.1186/s41239-023-00411-8
  • De Bellis, N. (2009). Bibliometrics and citation analysis: From the science citation index to cybermetrics. Scarecrow Press.
  • Gündüz, T., & Eren, F. (2024). Sağlıkta yapay zekâ: Bibliyometrik bir analiz. Sağlık Akademisyenleri Dergisi, 11(2), 277-285. https://doi.org/10.52880/sagakaderg.1420580
  • İkiel, C. & Yüksel, A. (2023). Coğrafi Bilgi Sistemleri ve Yapay Zeka Temelli Ulaşım Çalışmaları: Bibliyometrik Analiz Çalışması. In: Şahin, A. (ed.), Sosyal Bilimlerde Akademik Araştırma ve Değerlendirmeler- VI. Özgür Yayınları. DOI: https://doi.org/10.58830/ozgur.pub402.c1776
  • Kaplan, A. M., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
  • Keser Ateş, S., Kaleci, F., & Erdoğan, A. (2025). Artificial Intelligence In Education: A Bibliometric Analysis. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 7(1), 14-36.
  • Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global research on artificial intelligence from 1990–2014: Spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 66. https://doi.org/10.3390/ijgi5050066
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348–349.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Shi, L., Mai, Y., & Wu, Y. J. (2022). Digital Transformation: A Bibliometric Analysis. Journal of Organizational and End User Computing (JOEUC), 34(7), 1-20. https://doi.org/10.4018/JOEUC.302637
  • Tufekci, Z. (2017). Twitter and tear gas: The power and fragility of networked protest. Yale University Press.
  • TÜBİTAK. (2024). TÜBİTAK 2024 Yılı Faaliyet Raporu. https://tubitak.gov.tr/sites/default/files/2025-03/TUBITAK_2024_Yili_Faaliyet_Raporu.pdf
  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Vorontsova, A., Tarasenko, S., Duranowski, W., Durasiewicz, A., Soss, J., & Bilovol, A. (2025). A bibliometric analysis of the economic effects of using artificial intelligence and ChatGPT tools in higher education institutions. Problems and Perspectives in Management, 23(1), 101–114. https://doi.org/10.21511/ppm.23(1).2025.08
  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

DİJİTALLEŞME VE YAPAY ZEKÂ: AKADEMİK ÜRETİMİN BİBLİYOMETRİK ANALİZİ

Yıl 2025, Cilt: 34 Sayı: 2, 1599 - 1614, 24.10.2025
https://doi.org/10.35379/cusosbil.1679001

Öz

Dijitalleşme ve yapay zekâ (YZ), 21. yüzyılın temel dinamikleri olarak, bilimsel üretkenlikten endüstriyel yeniliklere ve toplumsal paradigmaların yeniden şekillenmesine kadar geniş bir yelpazede dönüştürücü etkiler yaratmaktadır. Bu çalışma, Web of Science (WoS) Core Collection veri tabanında 2000-2025 yılları arasında yayımlanmış 2.438 eseri bibliyometrik yöntemle analiz ederek, bu alanların akademik üretkenliğini, tematik evrimini, coğrafi yoğunlaşmalarını ve küresel işbirliği ağlarını sistematik bir şekilde haritalandırmaktadır. VOSviewer aracılığıyla görselleştirilen bulgular, yayınların son yıllarda çarpıcı bir ivme kazandığını (2024’te 633 yayınla zirve), Almanya’nın lider konumda olduğunu (384 yayın, 5.177 atıf), Çin (312 yayın, 4.415 atıf) ve Rusya’nın (256 yayın) önemli katkılar sunduğunu ortaya koymaktadır. Araştırma alanlarında bilgisayar bilimleri (659 yayın), mühendislik (489 yayın) ve işletme ekonomisi (464 yayın) baskın olup, çevre bilimleri (152 yayın) ve sosyal bilimler (86 yayın) gibi alanlar da dikkat çekmektedir. Anahtar kelime analizleri, “artificial intelligence” (696), “digitalization” (650) ve “machine learning” (208) terimlerinin bu alanların omurgasını oluşturduğunu ve disiplinler arası bir ekosistem geliştirdiğini göstermektedir. Ortak yazarlık ağları, 12 küme ve 924 bağlantıyla yoğun küresel işbirliklerini (örneğin, Lulea Teknoloji Üniversitesi: 1.251 atıf) yansıtmaktadır. Literatüre özgün bir katkı olarak, bu çalışma, dijitalleşme ve yapay zekânın kesişimini bütüncül bir şekilde haritalandırmaktadır.

Kaynakça

  • Abanga, E. A., & Acquah, T. (2024). A Bibliometric Analysis of Global Research Trends in Artificial Intelligence from 2019 to 2023. Asian Journal of Research in Computer Science, 17(12), 220–233. https://doi.org/10.9734/ajrcos/2024/v17i12540
  • Aydın, N. (2024). Türkiye’de yapay zekâ alanında yapılan çalışmal arın bibliyometrik analizi. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 27(52), 387-407. https://doi.org/10.31795/baunsobed.1545006
  • Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983. https://doi.org/10.3390/su151712983
  • Bitzenis, A., Koutsoupias, N., & Nosios, M. (2024). Artificial intelligence and machine learning in production efficiency enhancement and sustainable development: A comprehensive bibliometric review. Frontiers in Sustainability, 5, 1508647. https://doi.org/10.3389/frsus.2024.1508647
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
  • Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(43). https://doi.org/10.1186/s41239-023-00411-8
  • De Bellis, N. (2009). Bibliometrics and citation analysis: From the science citation index to cybermetrics. Scarecrow Press.
  • Gündüz, T., & Eren, F. (2024). Sağlıkta yapay zekâ: Bibliyometrik bir analiz. Sağlık Akademisyenleri Dergisi, 11(2), 277-285. https://doi.org/10.52880/sagakaderg.1420580
  • İkiel, C. & Yüksel, A. (2023). Coğrafi Bilgi Sistemleri ve Yapay Zeka Temelli Ulaşım Çalışmaları: Bibliyometrik Analiz Çalışması. In: Şahin, A. (ed.), Sosyal Bilimlerde Akademik Araştırma ve Değerlendirmeler- VI. Özgür Yayınları. DOI: https://doi.org/10.58830/ozgur.pub402.c1776
  • Kaplan, A. M., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. https://doi.org/10.1016/j.bushor.2019.09.003
  • Keser Ateş, S., Kaleci, F., & Erdoğan, A. (2025). Artificial Intelligence In Education: A Bibliometric Analysis. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 7(1), 14-36.
  • Niu, J., Tang, W., Xu, F., Zhou, X., & Song, Y. (2016). Global research on artificial intelligence from 1990–2014: Spatially-explicit bibliometric analysis. ISPRS International Journal of Geo-Information, 5(5), 66. https://doi.org/10.3390/ijgi5050066
  • Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348–349.
  • Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.
  • Shi, L., Mai, Y., & Wu, Y. J. (2022). Digital Transformation: A Bibliometric Analysis. Journal of Organizational and End User Computing (JOEUC), 34(7), 1-20. https://doi.org/10.4018/JOEUC.302637
  • Tufekci, Z. (2017). Twitter and tear gas: The power and fragility of networked protest. Yale University Press.
  • TÜBİTAK. (2024). TÜBİTAK 2024 Yılı Faaliyet Raporu. https://tubitak.gov.tr/sites/default/files/2025-03/TUBITAK_2024_Yili_Faaliyet_Raporu.pdf
  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Vorontsova, A., Tarasenko, S., Duranowski, W., Durasiewicz, A., Soss, J., & Bilovol, A. (2025). A bibliometric analysis of the economic effects of using artificial intelligence and ChatGPT tools in higher education institutions. Problems and Perspectives in Management, 23(1), 101–114. https://doi.org/10.21511/ppm.23(1).2025.08
  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511815478
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İletişim ve Medya Çalışmaları (Diğer)
Bölüm Makaleler
Yazarlar

Elif Çevik 0000-0002-4728-2450

Kübra Erden 0000-0003-2799-2428

Yayımlanma Tarihi 24 Ekim 2025
Gönderilme Tarihi 18 Nisan 2025
Kabul Tarihi 10 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 34 Sayı: 2

Kaynak Göster

APA Çevik, E., & Erden, K. (2025). DİJİTALLEŞME VE YAPAY ZEKÂ: AKADEMİK ÜRETİMİN BİBLİYOMETRİK ANALİZİ. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 34(2), 1599-1614. https://doi.org/10.35379/cusosbil.1679001