Derleme
BibTex RIS Kaynak Göster

Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri ve Biyoaktif Bileşenler ile İnteraksiyonları

Yıl 2020, , 151 - 164, 29.12.2020
https://doi.org/10.36846/CJAFS.2021.29

Öz

İnsan metabolizmasında iz miktarlarda bulunan mikro minerallerden biri olan demirin önemli ve çeşitli görevleri bulunmakta, eksikliğinde bazı belirtiler görülebilmekte ve hastalıklara yol açabilmektedir. Gıda matriksinin yapısında bulunan bu mikro mineralin diğer besin ögeleri ile etkileşimi ve gıda işleme teknolojilerinin etkilerinin değerlendirilmesi önemlidir. Biyoerişilebilirliği ve biyoyararlılığı ise, diyetteki miktar ve formlarının yanı sıra, diğer bileşenlerle aralarındaki sinerjik ve antagonistik etkileşimlerine de bağlıdır. Geleneksel gıda işlemenin, mikro mineral içeriği üzerinde olumsuz etkileri bulunmasından dolayı ısıl olmayan yeni işleme teknolojilerine yönelim olmuştur. İşleme teknolojilerinin in vitro sindirim metotlarıyla biyoerişilebilirliği üzerine etkileri tespit edilmektedir. Bu çalışmada, demirin vücuttaki fonksiyonları, emilim mekanizması, gıda işlemenin demirin biyoerişilebilirliği ve biyoyararlılığı üzerine etkileri, diğer besin ögeleri ve biyoaktif bileşenlerle interaksiyonları incelenerek derlenmiştir.

Kaynakça

  • Abrams, S. A., Griffin, I. J., Davila, P., Liang, L. (2001) Calcium fortification of breakfast cereal enhances calcium absorption in children without affecting iron absorption. The Journal of Pediatrics 139(4):522-526.
  • Akhtar, S., Anjum, F. M., Rehman, S. U., Sheikh, M. A. (2009) Effect of mineral fortification on rheological properties of whole wheat flour. Journal of Texture Studies 40(1):51-65.
  • Allali, S., Brousse, V., Sacri, A. S., Chalumeau, M., de Montalembert, M. (2017) Anemia in children: prevalence, causes, diagnostic work-up, and long-term consequences. Expert Review of Hematology 10(11):1023-1028.
  • Altıner, D. D., Şahan, Y. (2016) Gıdaların minerallerle zenginleştirilmesine yönelik uygulamalar, Türkiye 12. Gıda Kongresi, Edirne, Türkiye.
  • Baye, K., Guyot, J. P., Icard-Vernière, C., Rochette, I., Mouquet-Rivier, C. (2015) Enzymatic degradation of phytate, polyphenols and dietary fibers in Ethiopian injera flours: Effect on iron bioaccessibility. Food Chemistry 174: 60-67.
  • Blanco-Rojo R., Vaquero, M. P. (2019) Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Science & Emerging Technologies 51:126-138.
  • Boech, S. B., Hansen, M., Bukhave, K., Jensen, M., Sorensen, S. S., Kristensen, L. (2003) Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. American Journal of Clinical Nutrition 77: 173–179.
  • Bosscher, D., Van Caillie-Bertrand, M., Deelstra, H. (2001) Effect of thickening agents, based on soluble dietary fiber,the availability of calcium, iron, and zinc from infant formulas. Nutrition, 17(7-8): 614-618.
  • Briones-Labarca, V., Venegas-Cubillos, G., Ortiz-Portilla, S., Chacana-Okeda, M., Maureira, H. (2011a) Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chemistry 128(2): 520-529.
  • Briones-Labarca, V., Muñoz, C., Maureira, H. (2011b) Effect of high hydrostatic pressure on antioxidant capacity, mineral and starch bioaccessibility of a non conventional food: Prosopis chilensis seed. Food Research International 44(4):875-883.
  • Camaschella, C. (2015) Iron-deficiency anemia. New England Journal of Medicine, 372(19):1832–1843.
  • Cardoso, R. V. C., Fernandes, Â., Gonzaléz-Paramás, A. M., Barros, L., Ferreira, I. C. F. R. (2019) Flour fortification for nutritional and health improvement: A review. Food Research International 125:108576.
  • Casal, MNG. (2006) Carotenoids increase iron absorption from cereal-based food in the human. Nutrition Research, 26:340– 344.
  • Cilla, A., Bosch, L., Barberá, R., Alegría, A. (2018) Effect of processing on the bioaccessibility of bioactive compounds–a review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis 68:3-15.
  • Cook, J.D., Dassenko, S.A., Whittaker, P. (1991) Calcium supplementation: effect on iron absorption. The American Journal of Clinical Nutrition 53:106-111.
  • Cook, J. D., Reddy, M. B. (2001) Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. The American Journal of Clinical Nutrition 73(1):93-98.
  • Coudray, C., Bousset, C., Tressol, J. C., Pépin, D., Rayssiguier, Y. (1998) Short-term ingestion of chlorogenic or caffeic acids decreases zinc but not copper absorption in rats, utilization of stable isotopes and inductively-coupled plasma mass spectrometry technique. British Journal of Nutrition 80(6):575-584.
  • Deehr, M.S., Dallal G.E., Smith K.T., Taulbee J.D., Dawson- Hughes B. (1990) Effects of different calcium sources on iron absorption in postmenopausal women. The American Journal of Clinical Nutrition 51:95-99.
  • Deelstra, H. (2001) Effect of thickening agents, based on soluble dietary fiber, on the nkavailability of calcium, iron, and zinc from infant formulas. Nutrition 17(7-8):614-618.
  • Drago, S.R., Valencia, M.E. (2004) Influence of components of infant formulas on in vitroiron, zinc and calcium availability, Journal of Agricultural and Food Chemistry 52(10):3202-3207.
  • FAO/WHO. (2002) Human Vitamin and Mineral Requirements. Food and Nutrition Division, Bangkok, 286s.
  • Fernández-García, E., Carvajal-Lérida, I., Pérez-Gálvez, A. (2009) In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research 29(11):751-760.
  • Freeland-Graves, J. H., Sanjeevi, N., Lee, J. J. (2015) Global perspectives on trace element requirements. Journal of Trace Elements in Medicine and Biology 31:135-141.
  • Frossard, E., Bucher, M., Mächler, F., Mozafar, A., Hurrell, R. (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture 80(7):861-879.
  • Fuqua, B. K., Vulpe, C. D., & Anderson, G. J. (2012). Intestinal iron absorption. Journal of Trace Elements in Medicine and Biology 26(2-3):115-11.
  • Galán, M.G., Drago, S.R. (2014) Food matriand cooking process affect mineral bioaccessibility of enteral nutrition formulas. Journal of the Science of Food and Agriculture 94(3):515-521.
  • Gregory, P. J., Wahbi, A., Adu-Gyamfi, J., Heiling, M., Gruber, R., Joy, E. J., Broadley, M. R. (2017) Approaches to reduce zinc and iron deficits in food systems. Global Food Security 15:1-10.
  • Güzelcan, M. S., El, S. N. (2011) Simidin demir ve çinko mineralleriyle zenginleştirilmesi ve in vitro mineral biyoyararlılığının saptanması.Gıda 36(1): 41-48.
  • Hemalatha, S., Platel, K., Srinivasan, K. (2007a) Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India. Journal of Trace Elements in Medicine and Biology, 21(1):1-7.
  • Hemalatha S., Platel K., Srinivasan K. (2007b) Zinc and iron contents and their bioaccessibility in cereals and pulses consumed in India. Food Chemistry 102:1328–1336.
  • Hoppe, M., Önning, G., Berggren, A., Hulthén, L. (2015) Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age. British Journal of Nutrition, 114(8):1195-1202.
  • Hunt, J. R. (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. American Journal of Clinical Nutrition, 78(3):633–639.
  • Hurrell, R., Egli, I. (2010) Iron bioavailability and dietary reference values. The American Journal of Clinical Nutrition, 91(5):1461S-1467S.
  • Hurrell, R., Ranum, P., de Pee, S., Biebinger, R., Hulthen, L., Johnson, Q., Lynch, S. (2010) Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs. Food and Nutrition Bulletin 31(1_suppl1):S7-S21.
  • Khamoni, J. A., Hamshaw, T., Gardiner, P. H. (2017) Impact of ingredients on the elemental content of baby foods. Food Chemistry 231:309-315.
  • Khanam, A., Platel, K. (2016) Bioaccessibility of selenium, selenomethionin and selenocysteine from foods and influence of heat processing on the same. Food Chemistry 194:1293-1299.
  • Kristensen, M. B., Hels, O., Morberg, C., Marving, J., Bügel, S., Tetens, I. (2005) Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content. British Journal of Nutrition 94(1):78-83.
  • Kumar, V., Sinha, A. K., Makkar, H. P., Becker, K. (2010) Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry 120(4):945-959.
  • Kumar, S., Anukiruthika, T., Dutta, S., Kashyap, A. V., Moses, J. A., Anandharamakrishnan, C. (2020) Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science & Technology.
  • Kyomugasho, C., Gwala, S., Christiaens, S., Kermani, Z. J., Van Loey, A. M., Grauwet, T., Hendrickx, M. E. (2017) Pectin nanostructure influences pectin-cation interactions and in vitro bioaccessibility of Ca2+, Zn2+, Fe2+ and Mg2+-ions in model systems. Food Hydrocolloids 62:299-310.
  • Lucca, P., Hurrell, R., Potrykus, I. (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theoretical and Applied Genetics 102(2-3):392-397.
  • Miret, S., Simpson, R. J., McKie, A. T. (2003) Physiology and molecular biology of iron absorption. Annual Review of Nutrition 23:283-301.
  • Moongngarm, A., Saetung, N. (2010) Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry 122(3):782–788.
  • Mota C.,Nascimento A.C., Santos M., Delgado I., Coelho I., Rego A., Torres D.M., Castanheira I. (2016) The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysi 49:57–64.
  • Murgia, I., Arosio, P., Tarantino, D., Soave, C. (2012) Biofortification for combating “hidden hunger” for iron. Trends in Plant Science 17(1): 47-55.
  • Navas-Carretero, S., Pérez-Granados, A. M., Schoppen, S., Vaquero, M. P. (2009) An oily fish diet increases insulin sensitivity compared to a red meat diet in young iron-deficient women. British Journal of Nutrition 102(4):546-553.
  • Ortiz-Monasterio, J. I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R., Pena, R. J. (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46(3):293-307.
  • Pavord, S., Myers, B., Robinson, S., Allard, S., Strong, J., Oppenheimer, C. (2012) UK guidelines on the management of iron deficiency inpregnancy. British Journal of Haematology 156(5): 588-600.
  • Perales, S., Barberá, R., Lagarda, M. J., Farré, R. (2006) Fortification of milk with calcium: effect on calcium bioavailability and interactions with iron and zinc. Journal of Agricultural and Food Chemistry 54(13):4901-4906.
  • Pereira, E. J., Carvalho, L. M., Dellamora-Ortiz, G. M., Cardoso, F. S., Carvalho, J. L. (2016) Effect of different home-cooking methods on the bioaccessibility of zinc and iron in conventionally bred cowpea (Vigna unguiculata L. Walp) consumed in Brazil. Food & Nutrition Research 60(1): 29082.
  • Roldán-Marín, E., Sánchez-Moreno, C., Lloría, R., de Ancos, B., Cano, M. P. (2009) Onion high-pressure processing: Flavonol content and antioxidant activity. LWT-Food Science and Technology 42(4):835-841.
  • Rossi, E. (2005) Hepcidin - the iron regulatory hormone. Clinical Biochemist Reviews, 26:47-49.
  • Saini, R. K., Nile, S. H., Keum, Y. S. (2016) Food science and technology for management of iron deficiency in humans: A review. Trends in Food Science & Technology 53:13-22.
  • Scholl, T. O. (2011) Maternal iron status: Relation to fetal growth, length of gestation and iron endowment of the neonate. Nutrition Reviews, 69(Suppl. 1): S23–29.
  • Sebastiá, V., Barberá, R., Farré, R., Lagarda, M. J. (2001) Effects of legume processing on calcium, iron and zinc contents and dialysabilities. Journal of the Science of Food and Agriculture 81(12):1180-1185.
  • Silva, J. G. S., Rebellato, A. P., Greiner, R., Pallone, J. A. L. (2017) Bioaccessibility of calcium, iron and magnesium in residues of citrus and characterization of macronutrients. Food Research International 97:162-169.
  • Singh, P., Prasad, S., Aalbersberg, W. (2016) Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chemistry 207:125-131.
  • Thein, M., Ershler,W. B., Artz, A. S., Tecson, J., Robinson, B.E.,Rothstein, G., Robbins, S. (2009) Diminished quality of life and physical function in community-dwelling elderly with anemia. Medicine (Baltimore) 88(2):107–114.
  • Vasconcelos, M., Grusak, M.A. (2006) Status and Future Developments Involving Plant Iron in Animal and Human Nutrition. Iron Nutrition in Plants and Rhizospheric Microorganisms (pp. 1-22). Springer, Dordrecht.
  • Vaquero, M. P., García-Quismondo, Á., Cañizo, F. J. D., Sánchez-Muniz, F. J., Kumar, A. (2017) Iron status biomarkers and cardiovascular risk. Recent Trends Cardiovasc Risks, 6: 97-117.
  • Walczyk, T., von Blanckenburg, F. (2002) Natural iron isotope variations in human blood. Science 295(5562): 2065-2066.
  • Welch, R. M., Graham, R. D. (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of experimental botany 55(396): 353-364.
  • Windisch, W. (2002) Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Analytical and Bioanalytical Chemistry 372(3): 421-425.
  • Xia, Q., Wang, L., Xu, C., Mei, J., Li, Y. (2017) Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry 214: 533-542
  • Viadel, B., Barberá, R., Farré, R. (2006a) Uptake and retention of calcium, iron, and zinc from raw legumes and the effect of cooking on lentils in Caco-2 cells. Nutrition Research, 26(11): 591-596.
  • Yip, R. (2001) Iron deficiency and anemia. Nutrition and Health in Developing Countries (pp. 327-342). Humana Press, Totowa, NJ.
  • Zuidam, N. J. (2012) An industry perspective on the advantages and disadvantages of iron micronutrient delivery systems. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (pp. 505-540). Woodhead Publishing.
Yıl 2020, , 151 - 164, 29.12.2020
https://doi.org/10.36846/CJAFS.2021.29

Öz

Kaynakça

  • Abrams, S. A., Griffin, I. J., Davila, P., Liang, L. (2001) Calcium fortification of breakfast cereal enhances calcium absorption in children without affecting iron absorption. The Journal of Pediatrics 139(4):522-526.
  • Akhtar, S., Anjum, F. M., Rehman, S. U., Sheikh, M. A. (2009) Effect of mineral fortification on rheological properties of whole wheat flour. Journal of Texture Studies 40(1):51-65.
  • Allali, S., Brousse, V., Sacri, A. S., Chalumeau, M., de Montalembert, M. (2017) Anemia in children: prevalence, causes, diagnostic work-up, and long-term consequences. Expert Review of Hematology 10(11):1023-1028.
  • Altıner, D. D., Şahan, Y. (2016) Gıdaların minerallerle zenginleştirilmesine yönelik uygulamalar, Türkiye 12. Gıda Kongresi, Edirne, Türkiye.
  • Baye, K., Guyot, J. P., Icard-Vernière, C., Rochette, I., Mouquet-Rivier, C. (2015) Enzymatic degradation of phytate, polyphenols and dietary fibers in Ethiopian injera flours: Effect on iron bioaccessibility. Food Chemistry 174: 60-67.
  • Blanco-Rojo R., Vaquero, M. P. (2019) Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Science & Emerging Technologies 51:126-138.
  • Boech, S. B., Hansen, M., Bukhave, K., Jensen, M., Sorensen, S. S., Kristensen, L. (2003) Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. American Journal of Clinical Nutrition 77: 173–179.
  • Bosscher, D., Van Caillie-Bertrand, M., Deelstra, H. (2001) Effect of thickening agents, based on soluble dietary fiber,the availability of calcium, iron, and zinc from infant formulas. Nutrition, 17(7-8): 614-618.
  • Briones-Labarca, V., Venegas-Cubillos, G., Ortiz-Portilla, S., Chacana-Okeda, M., Maureira, H. (2011a) Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chemistry 128(2): 520-529.
  • Briones-Labarca, V., Muñoz, C., Maureira, H. (2011b) Effect of high hydrostatic pressure on antioxidant capacity, mineral and starch bioaccessibility of a non conventional food: Prosopis chilensis seed. Food Research International 44(4):875-883.
  • Camaschella, C. (2015) Iron-deficiency anemia. New England Journal of Medicine, 372(19):1832–1843.
  • Cardoso, R. V. C., Fernandes, Â., Gonzaléz-Paramás, A. M., Barros, L., Ferreira, I. C. F. R. (2019) Flour fortification for nutritional and health improvement: A review. Food Research International 125:108576.
  • Casal, MNG. (2006) Carotenoids increase iron absorption from cereal-based food in the human. Nutrition Research, 26:340– 344.
  • Cilla, A., Bosch, L., Barberá, R., Alegría, A. (2018) Effect of processing on the bioaccessibility of bioactive compounds–a review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis 68:3-15.
  • Cook, J.D., Dassenko, S.A., Whittaker, P. (1991) Calcium supplementation: effect on iron absorption. The American Journal of Clinical Nutrition 53:106-111.
  • Cook, J. D., Reddy, M. B. (2001) Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. The American Journal of Clinical Nutrition 73(1):93-98.
  • Coudray, C., Bousset, C., Tressol, J. C., Pépin, D., Rayssiguier, Y. (1998) Short-term ingestion of chlorogenic or caffeic acids decreases zinc but not copper absorption in rats, utilization of stable isotopes and inductively-coupled plasma mass spectrometry technique. British Journal of Nutrition 80(6):575-584.
  • Deehr, M.S., Dallal G.E., Smith K.T., Taulbee J.D., Dawson- Hughes B. (1990) Effects of different calcium sources on iron absorption in postmenopausal women. The American Journal of Clinical Nutrition 51:95-99.
  • Deelstra, H. (2001) Effect of thickening agents, based on soluble dietary fiber, on the nkavailability of calcium, iron, and zinc from infant formulas. Nutrition 17(7-8):614-618.
  • Drago, S.R., Valencia, M.E. (2004) Influence of components of infant formulas on in vitroiron, zinc and calcium availability, Journal of Agricultural and Food Chemistry 52(10):3202-3207.
  • FAO/WHO. (2002) Human Vitamin and Mineral Requirements. Food and Nutrition Division, Bangkok, 286s.
  • Fernández-García, E., Carvajal-Lérida, I., Pérez-Gálvez, A. (2009) In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research 29(11):751-760.
  • Freeland-Graves, J. H., Sanjeevi, N., Lee, J. J. (2015) Global perspectives on trace element requirements. Journal of Trace Elements in Medicine and Biology 31:135-141.
  • Frossard, E., Bucher, M., Mächler, F., Mozafar, A., Hurrell, R. (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. Journal of the Science of Food and Agriculture 80(7):861-879.
  • Fuqua, B. K., Vulpe, C. D., & Anderson, G. J. (2012). Intestinal iron absorption. Journal of Trace Elements in Medicine and Biology 26(2-3):115-11.
  • Galán, M.G., Drago, S.R. (2014) Food matriand cooking process affect mineral bioaccessibility of enteral nutrition formulas. Journal of the Science of Food and Agriculture 94(3):515-521.
  • Gregory, P. J., Wahbi, A., Adu-Gyamfi, J., Heiling, M., Gruber, R., Joy, E. J., Broadley, M. R. (2017) Approaches to reduce zinc and iron deficits in food systems. Global Food Security 15:1-10.
  • Güzelcan, M. S., El, S. N. (2011) Simidin demir ve çinko mineralleriyle zenginleştirilmesi ve in vitro mineral biyoyararlılığının saptanması.Gıda 36(1): 41-48.
  • Hemalatha, S., Platel, K., Srinivasan, K. (2007a) Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India. Journal of Trace Elements in Medicine and Biology, 21(1):1-7.
  • Hemalatha S., Platel K., Srinivasan K. (2007b) Zinc and iron contents and their bioaccessibility in cereals and pulses consumed in India. Food Chemistry 102:1328–1336.
  • Hoppe, M., Önning, G., Berggren, A., Hulthén, L. (2015) Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: a double-isotope cross-over single-blind study in women of reproductive age. British Journal of Nutrition, 114(8):1195-1202.
  • Hunt, J. R. (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. American Journal of Clinical Nutrition, 78(3):633–639.
  • Hurrell, R., Egli, I. (2010) Iron bioavailability and dietary reference values. The American Journal of Clinical Nutrition, 91(5):1461S-1467S.
  • Hurrell, R., Ranum, P., de Pee, S., Biebinger, R., Hulthen, L., Johnson, Q., Lynch, S. (2010) Revised recommendations for iron fortification of wheat flour and an evaluation of the expected impact of current national wheat flour fortification programs. Food and Nutrition Bulletin 31(1_suppl1):S7-S21.
  • Khamoni, J. A., Hamshaw, T., Gardiner, P. H. (2017) Impact of ingredients on the elemental content of baby foods. Food Chemistry 231:309-315.
  • Khanam, A., Platel, K. (2016) Bioaccessibility of selenium, selenomethionin and selenocysteine from foods and influence of heat processing on the same. Food Chemistry 194:1293-1299.
  • Kristensen, M. B., Hels, O., Morberg, C., Marving, J., Bügel, S., Tetens, I. (2005) Pork meat increases iron absorption from a 5-day fully controlled diet when compared to a vegetarian diet with similar vitamin C and phytic acid content. British Journal of Nutrition 94(1):78-83.
  • Kumar, V., Sinha, A. K., Makkar, H. P., Becker, K. (2010) Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry 120(4):945-959.
  • Kumar, S., Anukiruthika, T., Dutta, S., Kashyap, A. V., Moses, J. A., Anandharamakrishnan, C. (2020) Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science & Technology.
  • Kyomugasho, C., Gwala, S., Christiaens, S., Kermani, Z. J., Van Loey, A. M., Grauwet, T., Hendrickx, M. E. (2017) Pectin nanostructure influences pectin-cation interactions and in vitro bioaccessibility of Ca2+, Zn2+, Fe2+ and Mg2+-ions in model systems. Food Hydrocolloids 62:299-310.
  • Lucca, P., Hurrell, R., Potrykus, I. (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theoretical and Applied Genetics 102(2-3):392-397.
  • Miret, S., Simpson, R. J., McKie, A. T. (2003) Physiology and molecular biology of iron absorption. Annual Review of Nutrition 23:283-301.
  • Moongngarm, A., Saetung, N. (2010) Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry 122(3):782–788.
  • Mota C.,Nascimento A.C., Santos M., Delgado I., Coelho I., Rego A., Torres D.M., Castanheira I. (2016) The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). Journal of Food Composition and Analysi 49:57–64.
  • Murgia, I., Arosio, P., Tarantino, D., Soave, C. (2012) Biofortification for combating “hidden hunger” for iron. Trends in Plant Science 17(1): 47-55.
  • Navas-Carretero, S., Pérez-Granados, A. M., Schoppen, S., Vaquero, M. P. (2009) An oily fish diet increases insulin sensitivity compared to a red meat diet in young iron-deficient women. British Journal of Nutrition 102(4):546-553.
  • Ortiz-Monasterio, J. I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R., Pena, R. J. (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46(3):293-307.
  • Pavord, S., Myers, B., Robinson, S., Allard, S., Strong, J., Oppenheimer, C. (2012) UK guidelines on the management of iron deficiency inpregnancy. British Journal of Haematology 156(5): 588-600.
  • Perales, S., Barberá, R., Lagarda, M. J., Farré, R. (2006) Fortification of milk with calcium: effect on calcium bioavailability and interactions with iron and zinc. Journal of Agricultural and Food Chemistry 54(13):4901-4906.
  • Pereira, E. J., Carvalho, L. M., Dellamora-Ortiz, G. M., Cardoso, F. S., Carvalho, J. L. (2016) Effect of different home-cooking methods on the bioaccessibility of zinc and iron in conventionally bred cowpea (Vigna unguiculata L. Walp) consumed in Brazil. Food & Nutrition Research 60(1): 29082.
  • Roldán-Marín, E., Sánchez-Moreno, C., Lloría, R., de Ancos, B., Cano, M. P. (2009) Onion high-pressure processing: Flavonol content and antioxidant activity. LWT-Food Science and Technology 42(4):835-841.
  • Rossi, E. (2005) Hepcidin - the iron regulatory hormone. Clinical Biochemist Reviews, 26:47-49.
  • Saini, R. K., Nile, S. H., Keum, Y. S. (2016) Food science and technology for management of iron deficiency in humans: A review. Trends in Food Science & Technology 53:13-22.
  • Scholl, T. O. (2011) Maternal iron status: Relation to fetal growth, length of gestation and iron endowment of the neonate. Nutrition Reviews, 69(Suppl. 1): S23–29.
  • Sebastiá, V., Barberá, R., Farré, R., Lagarda, M. J. (2001) Effects of legume processing on calcium, iron and zinc contents and dialysabilities. Journal of the Science of Food and Agriculture 81(12):1180-1185.
  • Silva, J. G. S., Rebellato, A. P., Greiner, R., Pallone, J. A. L. (2017) Bioaccessibility of calcium, iron and magnesium in residues of citrus and characterization of macronutrients. Food Research International 97:162-169.
  • Singh, P., Prasad, S., Aalbersberg, W. (2016) Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji. Food Chemistry 207:125-131.
  • Thein, M., Ershler,W. B., Artz, A. S., Tecson, J., Robinson, B.E.,Rothstein, G., Robbins, S. (2009) Diminished quality of life and physical function in community-dwelling elderly with anemia. Medicine (Baltimore) 88(2):107–114.
  • Vasconcelos, M., Grusak, M.A. (2006) Status and Future Developments Involving Plant Iron in Animal and Human Nutrition. Iron Nutrition in Plants and Rhizospheric Microorganisms (pp. 1-22). Springer, Dordrecht.
  • Vaquero, M. P., García-Quismondo, Á., Cañizo, F. J. D., Sánchez-Muniz, F. J., Kumar, A. (2017) Iron status biomarkers and cardiovascular risk. Recent Trends Cardiovasc Risks, 6: 97-117.
  • Walczyk, T., von Blanckenburg, F. (2002) Natural iron isotope variations in human blood. Science 295(5562): 2065-2066.
  • Welch, R. M., Graham, R. D. (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of experimental botany 55(396): 353-364.
  • Windisch, W. (2002) Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Analytical and Bioanalytical Chemistry 372(3): 421-425.
  • Xia, Q., Wang, L., Xu, C., Mei, J., Li, Y. (2017) Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.). Food Chemistry 214: 533-542
  • Viadel, B., Barberá, R., Farré, R. (2006a) Uptake and retention of calcium, iron, and zinc from raw legumes and the effect of cooking on lentils in Caco-2 cells. Nutrition Research, 26(11): 591-596.
  • Yip, R. (2001) Iron deficiency and anemia. Nutrition and Health in Developing Countries (pp. 327-342). Humana Press, Totowa, NJ.
  • Zuidam, N. J. (2012) An industry perspective on the advantages and disadvantages of iron micronutrient delivery systems. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals (pp. 505-540). Woodhead Publishing.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makalesi
Yazarlar

Ceren İnce 0000-0001-9931-2327

Özlem Çağındı 0000-0002-6436-9208

Yayımlanma Tarihi 29 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA İnce, C., & Çağındı, Ö. (2020). Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri ve Biyoaktif Bileşenler ile İnteraksiyonları. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 35(2), 151-164. https://doi.org/10.36846/CJAFS.2021.29
AMA İnce C, Çağındı Ö. Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri ve Biyoaktif Bileşenler ile İnteraksiyonları. Çukurova Tarım Gıda Bil. Der. Aralık 2020;35(2):151-164. doi:10.36846/CJAFS.2021.29
Chicago İnce, Ceren, ve Özlem Çağındı. “Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri Ve Biyoaktif Bileşenler Ile İnteraksiyonları”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 35, sy. 2 (Aralık 2020): 151-64. https://doi.org/10.36846/CJAFS.2021.29.
EndNote İnce C, Çağındı Ö (01 Aralık 2020) Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri ve Biyoaktif Bileşenler ile İnteraksiyonları. Çukurova Tarım ve Gıda Bilimleri Dergisi 35 2 151–164.
IEEE C. İnce ve Ö. Çağındı, “Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri ve Biyoaktif Bileşenler ile İnteraksiyonları”, Çukurova Tarım Gıda Bil. Der., c. 35, sy. 2, ss. 151–164, 2020, doi: 10.36846/CJAFS.2021.29.
ISNAD İnce, Ceren - Çağındı, Özlem. “Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri Ve Biyoaktif Bileşenler Ile İnteraksiyonları”. Çukurova Tarım ve Gıda Bilimleri Dergisi 35/2 (Aralık 2020), 151-164. https://doi.org/10.36846/CJAFS.2021.29.
JAMA İnce C, Çağındı Ö. Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri ve Biyoaktif Bileşenler ile İnteraksiyonları. Çukurova Tarım Gıda Bil. Der. 2020;35:151–164.
MLA İnce, Ceren ve Özlem Çağındı. “Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri Ve Biyoaktif Bileşenler Ile İnteraksiyonları”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, c. 35, sy. 2, 2020, ss. 151-64, doi:10.36846/CJAFS.2021.29.
Vancouver İnce C, Çağındı Ö. Demir Minerali: Fonksiyonları, Gıda İşlemenin Biyoyararlılığı Üzerine Etkileri ve Biyoaktif Bileşenler ile İnteraksiyonları. Çukurova Tarım Gıda Bil. Der. 2020;35(2):151-64.

Çukurova Üniversitesi Ziraat Fakültesi Dergisi” yayın hayatına 1 Ocak 2016 tarihi itibariyle “Çukurova Tarım ve Gıda Bilimleri Dergisi” adıyla devam etmektedir.


logo_224x57_white.gif       ResearchBib User Pictureroot indexing ile ilgili görsel sonucu