Loading [a11y]/accessibility-menu.js
Derleme
BibTex RIS Kaynak Göster

Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri

Yıl 2016, Cilt: 31 Sayı: 2, 9 - 16, 29.07.2016

Öz

Üzüm çekirdeği, üzüm yetiştiriciliğinde dünyada önemli bir yere sahip ülkemiz için, sahip olduğu zengin biyoaktif bileşenlerle meyve suyu ve şaraphane işletmelerinin ekonomik açıdan önemli bir geri dönüşüm ürünüdür. Son yıllarda gıda, farmasotik ve kozmetik sektörleri için oldukça değerli bir hammadde haline gelen üzüm çekirdekleri, sahip oldukları zengin yağ asitleri, tokoller, fenol bileşikleri ve steroller gibi birçok farklı alanda kullanılabilecek bileşenlerle önemli bir potansiyele sahiptir. Bu anlamda ülkemizde bu konuya olan ilgi son zamanlarda artmış ve çeşitli tesislerde üzüm çekirdeği yağı üretimi faaliyete geçmiştir. Bu derlemede üzüm çekirdeğinin bulundurduğu önemli biyoaktif bileşenler ve bu bileşenlerin üzümün olgunlaşma evreleri boyunca değişimleri ayrıntılı olarak ele alınmıştır.

Kaynakça

  • Ariga, T., (2004) The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors 21: 197–201.
  • Assumpção, C. F., Nunes, I. L., Mendonça, T. A., Bortolin, R. C., Jablonski, A., Flôres, S. H., Rios, dO. A., (2016) Bioactive Compounds and Stability of Organic and Conventional Vitis labrusca Grape Seed Oils. J Am Oil Chem Soc 93(1): 115–124.
  • Bail, S., Stuebiger, F., Krist, S., Unterweger, H., Buchbauer, G., (2008) Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity. Food Chem 108: 1122–1132.
  • Barba, F. J., Zhu, Z., Koubaa, M., Sant’ana, A. S., (2016) Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and byproducts. Trends Food Sci Tech 49: 96– 109.
  • Barbieri, L., Andreola, F., Lancellotti, I., Taurino, R., (2013) Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Manage 33: 2307–2315.
  • Bautista-Ortín, A. B., Jiménez-Pascual, E., Busse-Valverde, N., López-Roca, J. M., Ros-García, J. M., Gómez-Plaza, E., (2013) Effect of wine maceration enzymes on the extraction of grape seed proanthocyanidins. Food Bioprocess Technol 6(8): 2207–2212.
  • Beveridge, J. H. T., Girard, B., Kopp, T., Drover, J. C. G., (2005) Yield and Composition of Grape Seed Oils Extracted by Supercritical Carbon dioxide and Petroleum Ether: Varietal Effects. J Agric Food Chem 53: 1799–1804.
  • Castellarin, S. D., Bavaresco, L., Falginella, L., Gonçalves, M. I. V. Z., Di Caspero, G., (2012) “Phenolics in Grape Berry and Key Antioxidants.” in Geros, H., Chaves, M. M., Delrot, S., Bentham Science Publishers 89–110. http://hdl.handle.net/10807/61282].
  • Cohen, S. D., Tarara, J. M., Gambetta, G. A., Matthews, M. A., Kennedy, J. A., (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J exp bot 63(7): 2655–2665.
  • Crews, C., Hough, P., Godward, J., Brereton, P., Lees, M., Guiet, S., Winkelmann, W., (2006) J Agr Food Chem 54: 6261–6265.
  • Deluc, G. L., Quilici, D. R., Decendit, A., Grimplet, J., Wheatley, M. D., Schlauch, K. A., Mérillon, J-M., Cushman, J. C., Cramer, G. R., (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10: 212.
  • Demirtaş, İ., Pelvan, E., Özdemir, İ. S., Alasalvar, C., Ertaş, E., (2013) Lipid characteristics and phenolics of native grape seed oils grown in Turkey. Eur J Lipid Sci Tech 115: 641–647.
  • FAO 2013. Year Production, Statistics, FAOSTAT, Grape Production. http://faostat3.fao.org/browse/Q/QC/E Erişim tarihi: 5 Mayıs 2015.
  • Fernandes, L., Casal, S., Cruz, R., Pereira, J. A., Ramalhosa, E., (2013) Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res Int 50: 161–166.
  • Fiori, L., Lavelli, V., Duba, K. S., Harsha, P. S. C. S., Mohamed, H. B., Guella, G., (2014) Supercritical CO2 extraction of oil from seeds of six grape cultivars: Modeling of mass transfer kinetics and evaluation of lipid profiles and tocol contents. J Supercrit Fluid 94: 71–80.
  • Hanganu, A., Todaşcă, M-C., Chira, N-A., Maganu, M., Roşca, S., (2012) The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chem 134: 2453–2458.
  • Horvath, G., Wessjohann, L., Bigirimana, J., Monica, H., Jansen, M., Guisez, Y., Caubergs, R., Horemans, N., (2006) Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallée). Plant Physiol Bioch 44(11): 724–731.
  • Karaman, S., Karasu, S., Tornuk, F., Toker, O. S., Geçgel, Ü., Sağdıç, O., Özcan, N., Gül, O., (2015) Recovery potential of cold press byproducts obtained from the edible oil industry: Physicochemical, bioactive, and antimicrobial properties. J Agric Food Chem 63: 2305–2513.
  • Kennedy, J. A., Matthews, M. A., Waterhouse, A. L., (2000) Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55: 77–85.
  • Kostadinovic-Velickovska, S., Mitrev, S., (2013) Characterization of Fatty Acid Profile, Polyphenolic Content and Antioxidant Activity of Cold Pressed and Refined Edible Oils From Macedonia. J Food Chem Nutr 01: 16–21.
  • Kreps, F., Vrbiková, L., Schmidt, Š., (2014). Influence of industrial physical refining on tocopherol, chlorophyll and beta‐carotene content in sunflower and rapeseed oil. Eur J Lipid Sci Tech 116: 1572–1582.
  • Lachman, J., Hejtmànkovà, A., Hejtmànkovà, K., Horníčkovà, S., Pivec, V., Skala, O., Dědina, M., Přibyl, J., (2013) Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essentialelements content as a by-product of winemaking. Ind Crop Prod 49: 445– 453.
  • Lachman, J., Hejtmànkovà, A., Tàborský, J., Kotíkovà, Z., Pivec, V., Střalkovà, R., Vollmannová, A., Bojňanská, T., Dědina, M., (2015) Evaluation of oil content and fatty acid composition in the seed of grapevine varieties. Food Sci TechnolLEB 63: 620–625.
  • Liu, X. Y., Pan, Q. H., Yan, G. L., He, J. J., Duan, C. Q., (2010) Changes of Flavan3-ols with Different Degrees of Polymerization in Seeds of ‘Shiraz’, ‘Cabernet Sauvignon’ and ‘Marselan’ Grapes after Veraison. Molecules 15: 7763–7774.
  • Lutterodt, H., Slavin, M., Whent, M., Turner, E., Yu, L., (2011) Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem 128: 391–399.
  • Maier, T., Schieber, A., Kammerer, D. R., Carle, R., (2008). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 112: 551–559.
  • Malićanin, M., Rac, V., Antić, V., Antić, M., Palade, L. M., Kefalas, P., Rakić, V., (2014) Content of antioxidants, antioxidant capacity and oxidative stability of grape seed oil obtained by ultra sound assisted extraction. J Am Oil Chem Soc 91(6): 989–999.
  • Matthäus, B., (2008) Virgin grape seed oil: Is it really a nutritional highlight?. Eur J Lipid Sci Technol 110: 645–660.
  • Mattivi, F., Vrhovsek, U., Masuero, D., Trainotti, D., (2009) Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Aust J Grape Wine Res 15: 27– 35.
  • Oliveira, D. A., Salvador, A. A., Smânia, A., Smânia, E. F., Maraschin, M., Ferreira, S. R., (2013) Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J Biotechnol 164(3): 423–432.
  • Ou, K., Gu, L., (2014) Absorption and metabolism of proanthocyanidins. J Funct Foods 7: 43–53.
  • Podolyan, A., White, J., Jordan, B., Winefield, C., (2010) Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct Plant Biol 37: 767–784.
  • Rombaut, N., Savoire, R., Thomasset, B., Castello, J., Van Hecke, E., Lanoisellè, JL., (2015) Optimization of oil yield and oil total phenolic content during grapeseed cold screw pressing. Ind Crop Prod 63: 26–33.
  • Rubio, M., Alvarez-Ortí, M., Alvarruiz, A., Fernàndez, E., Pardo, J. E., (2009) Characterization of oil obtained from grape seeds collected during berry development. J Agric Food Chem 57: 2812–2815.
  • Ruggiero, A., Vitalini, S., Burlini, N., Bernasconi, S., Iriti, M., (2013) Phytosterols in grapes and wine, and effects of agrochemicals on their levels. Food Chem 141: 3473–3479.
  • Sabir, A., Ünver, A., Kara, Z., (2012) The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.). J Sci Food Agr 92: 1982– 1987.
  • Seeram, N. P., (2008) Berry fruits for cancer prevention: Current status and future prospects. J Agric Food Chem 56: 630– 635.
  • Semerci, A., Kızıltuğ, T., Çelik, A. D., Kiracı, M. A., (2015) Türkiye bağcılığının genel durumu. MKU Ziraat Fak Derg 20 (2): 45–51.
  • Shiozaki, S., Murakami, K. (2016) Lipids in the seeds of wild grapes native to Japan: Vitis coignetiae and Vitis ficifolia var. ganebu. Sci Hortic-Amsterdam, 201: 124–129.
  • Sofi, F. R., Raju, C. V., Lakshmisha, I. P., Singh, R. R., (2016) Antioxidant and antimicrobial properties of grape and papaya seed extracts and their application on the preservation of Indian mackerel (Rastrelliger kanagurta) during ice storage. J Food Sci Technol 53(1), 104– 117.
  • Soto, M. L., Falqué, E., Domínguez, H., (2015) Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2(3), 259–276.
  • Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D. A., Garcia-Viguera, C., (2014) Natural bioactive compounds from winery byproducts as health promoters. Int J Mol Sci 15: 15638–15678.
  • Vilela, A., Jordão, A., Cosme, F., Desk, S., (2016) Wine phenolics: Looking for a smooth mouthfeel. SDRP J Food Sci Tech 1(1).
  • Yılmaz, E. E., Özvural, E. B., Vural, H., (2011) Extraction and identification of proanthocyanidins from grape seed (Vitis vinifera) using supercritical carbon dioxide. J Supercrit Fluid 55: 924–928.
  • Yılmaz, İ., (2010) Antioksidan içeren bazı gıdalar ve oksidatif stres. İnönü Üniv Tıp Fak Derg 17(2): 143–153.

Main Bioactive Compounds of Grape Seeds

Yıl 2016, Cilt: 31 Sayı: 2, 9 - 16, 29.07.2016

Öz

Grape seeds, reveals from surpluses of fruit juice and wine industry, is potentially an important raw material for, food, cosmetic and pharmaceutic sectors due to its precious bioactive ingredients such as fatty acids, tocols, phenolics and sterols. Grape seeds and its extracts are drawing interests of the new researches, investments and trade routes in Turkey as one of those biggest producer countries of grape cultivation. Therefore, grape seed oil production has been started up already in certain plants which economically plays a crucial role in the valorisation of these seeds. In this review, bioactive compounds of grape seeds and their changes during ripening stages were discussed in depth.

Kaynakça

  • Ariga, T., (2004) The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors 21: 197–201.
  • Assumpção, C. F., Nunes, I. L., Mendonça, T. A., Bortolin, R. C., Jablonski, A., Flôres, S. H., Rios, dO. A., (2016) Bioactive Compounds and Stability of Organic and Conventional Vitis labrusca Grape Seed Oils. J Am Oil Chem Soc 93(1): 115–124.
  • Bail, S., Stuebiger, F., Krist, S., Unterweger, H., Buchbauer, G., (2008) Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity. Food Chem 108: 1122–1132.
  • Barba, F. J., Zhu, Z., Koubaa, M., Sant’ana, A. S., (2016) Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and byproducts. Trends Food Sci Tech 49: 96– 109.
  • Barbieri, L., Andreola, F., Lancellotti, I., Taurino, R., (2013) Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Manage 33: 2307–2315.
  • Bautista-Ortín, A. B., Jiménez-Pascual, E., Busse-Valverde, N., López-Roca, J. M., Ros-García, J. M., Gómez-Plaza, E., (2013) Effect of wine maceration enzymes on the extraction of grape seed proanthocyanidins. Food Bioprocess Technol 6(8): 2207–2212.
  • Beveridge, J. H. T., Girard, B., Kopp, T., Drover, J. C. G., (2005) Yield and Composition of Grape Seed Oils Extracted by Supercritical Carbon dioxide and Petroleum Ether: Varietal Effects. J Agric Food Chem 53: 1799–1804.
  • Castellarin, S. D., Bavaresco, L., Falginella, L., Gonçalves, M. I. V. Z., Di Caspero, G., (2012) “Phenolics in Grape Berry and Key Antioxidants.” in Geros, H., Chaves, M. M., Delrot, S., Bentham Science Publishers 89–110. http://hdl.handle.net/10807/61282].
  • Cohen, S. D., Tarara, J. M., Gambetta, G. A., Matthews, M. A., Kennedy, J. A., (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J exp bot 63(7): 2655–2665.
  • Crews, C., Hough, P., Godward, J., Brereton, P., Lees, M., Guiet, S., Winkelmann, W., (2006) J Agr Food Chem 54: 6261–6265.
  • Deluc, G. L., Quilici, D. R., Decendit, A., Grimplet, J., Wheatley, M. D., Schlauch, K. A., Mérillon, J-M., Cushman, J. C., Cramer, G. R., (2009) Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. BMC Genomics 10: 212.
  • Demirtaş, İ., Pelvan, E., Özdemir, İ. S., Alasalvar, C., Ertaş, E., (2013) Lipid characteristics and phenolics of native grape seed oils grown in Turkey. Eur J Lipid Sci Tech 115: 641–647.
  • FAO 2013. Year Production, Statistics, FAOSTAT, Grape Production. http://faostat3.fao.org/browse/Q/QC/E Erişim tarihi: 5 Mayıs 2015.
  • Fernandes, L., Casal, S., Cruz, R., Pereira, J. A., Ramalhosa, E., (2013) Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res Int 50: 161–166.
  • Fiori, L., Lavelli, V., Duba, K. S., Harsha, P. S. C. S., Mohamed, H. B., Guella, G., (2014) Supercritical CO2 extraction of oil from seeds of six grape cultivars: Modeling of mass transfer kinetics and evaluation of lipid profiles and tocol contents. J Supercrit Fluid 94: 71–80.
  • Hanganu, A., Todaşcă, M-C., Chira, N-A., Maganu, M., Roşca, S., (2012) The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chem 134: 2453–2458.
  • Horvath, G., Wessjohann, L., Bigirimana, J., Monica, H., Jansen, M., Guisez, Y., Caubergs, R., Horemans, N., (2006) Accumulation of tocopherols and tocotrienols during seed development of grape (Vitis vinifera L. cv. Albert Lavallée). Plant Physiol Bioch 44(11): 724–731.
  • Karaman, S., Karasu, S., Tornuk, F., Toker, O. S., Geçgel, Ü., Sağdıç, O., Özcan, N., Gül, O., (2015) Recovery potential of cold press byproducts obtained from the edible oil industry: Physicochemical, bioactive, and antimicrobial properties. J Agric Food Chem 63: 2305–2513.
  • Kennedy, J. A., Matthews, M. A., Waterhouse, A. L., (2000) Changes in grape seed polyphenols during fruit ripening. Phytochemistry 55: 77–85.
  • Kostadinovic-Velickovska, S., Mitrev, S., (2013) Characterization of Fatty Acid Profile, Polyphenolic Content and Antioxidant Activity of Cold Pressed and Refined Edible Oils From Macedonia. J Food Chem Nutr 01: 16–21.
  • Kreps, F., Vrbiková, L., Schmidt, Š., (2014). Influence of industrial physical refining on tocopherol, chlorophyll and beta‐carotene content in sunflower and rapeseed oil. Eur J Lipid Sci Tech 116: 1572–1582.
  • Lachman, J., Hejtmànkovà, A., Hejtmànkovà, K., Horníčkovà, S., Pivec, V., Skala, O., Dědina, M., Přibyl, J., (2013) Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essentialelements content as a by-product of winemaking. Ind Crop Prod 49: 445– 453.
  • Lachman, J., Hejtmànkovà, A., Tàborský, J., Kotíkovà, Z., Pivec, V., Střalkovà, R., Vollmannová, A., Bojňanská, T., Dědina, M., (2015) Evaluation of oil content and fatty acid composition in the seed of grapevine varieties. Food Sci TechnolLEB 63: 620–625.
  • Liu, X. Y., Pan, Q. H., Yan, G. L., He, J. J., Duan, C. Q., (2010) Changes of Flavan3-ols with Different Degrees of Polymerization in Seeds of ‘Shiraz’, ‘Cabernet Sauvignon’ and ‘Marselan’ Grapes after Veraison. Molecules 15: 7763–7774.
  • Lutterodt, H., Slavin, M., Whent, M., Turner, E., Yu, L., (2011) Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem 128: 391–399.
  • Maier, T., Schieber, A., Kammerer, D. R., Carle, R., (2008). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 112: 551–559.
  • Malićanin, M., Rac, V., Antić, V., Antić, M., Palade, L. M., Kefalas, P., Rakić, V., (2014) Content of antioxidants, antioxidant capacity and oxidative stability of grape seed oil obtained by ultra sound assisted extraction. J Am Oil Chem Soc 91(6): 989–999.
  • Matthäus, B., (2008) Virgin grape seed oil: Is it really a nutritional highlight?. Eur J Lipid Sci Technol 110: 645–660.
  • Mattivi, F., Vrhovsek, U., Masuero, D., Trainotti, D., (2009) Differences in the amount and structure of extractable skin and seed tannins amongst red grape varieties. Aust J Grape Wine Res 15: 27– 35.
  • Oliveira, D. A., Salvador, A. A., Smânia, A., Smânia, E. F., Maraschin, M., Ferreira, S. R., (2013) Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J Biotechnol 164(3): 423–432.
  • Ou, K., Gu, L., (2014) Absorption and metabolism of proanthocyanidins. J Funct Foods 7: 43–53.
  • Podolyan, A., White, J., Jordan, B., Winefield, C., (2010) Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct Plant Biol 37: 767–784.
  • Rombaut, N., Savoire, R., Thomasset, B., Castello, J., Van Hecke, E., Lanoisellè, JL., (2015) Optimization of oil yield and oil total phenolic content during grapeseed cold screw pressing. Ind Crop Prod 63: 26–33.
  • Rubio, M., Alvarez-Ortí, M., Alvarruiz, A., Fernàndez, E., Pardo, J. E., (2009) Characterization of oil obtained from grape seeds collected during berry development. J Agric Food Chem 57: 2812–2815.
  • Ruggiero, A., Vitalini, S., Burlini, N., Bernasconi, S., Iriti, M., (2013) Phytosterols in grapes and wine, and effects of agrochemicals on their levels. Food Chem 141: 3473–3479.
  • Sabir, A., Ünver, A., Kara, Z., (2012) The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.). J Sci Food Agr 92: 1982– 1987.
  • Seeram, N. P., (2008) Berry fruits for cancer prevention: Current status and future prospects. J Agric Food Chem 56: 630– 635.
  • Semerci, A., Kızıltuğ, T., Çelik, A. D., Kiracı, M. A., (2015) Türkiye bağcılığının genel durumu. MKU Ziraat Fak Derg 20 (2): 45–51.
  • Shiozaki, S., Murakami, K. (2016) Lipids in the seeds of wild grapes native to Japan: Vitis coignetiae and Vitis ficifolia var. ganebu. Sci Hortic-Amsterdam, 201: 124–129.
  • Sofi, F. R., Raju, C. V., Lakshmisha, I. P., Singh, R. R., (2016) Antioxidant and antimicrobial properties of grape and papaya seed extracts and their application on the preservation of Indian mackerel (Rastrelliger kanagurta) during ice storage. J Food Sci Technol 53(1), 104– 117.
  • Soto, M. L., Falqué, E., Domínguez, H., (2015) Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2(3), 259–276.
  • Teixeira, A., Baenas, N., Dominguez-Perles, R., Barros, A., Rosa, E., Moreno, D. A., Garcia-Viguera, C., (2014) Natural bioactive compounds from winery byproducts as health promoters. Int J Mol Sci 15: 15638–15678.
  • Vilela, A., Jordão, A., Cosme, F., Desk, S., (2016) Wine phenolics: Looking for a smooth mouthfeel. SDRP J Food Sci Tech 1(1).
  • Yılmaz, E. E., Özvural, E. B., Vural, H., (2011) Extraction and identification of proanthocyanidins from grape seed (Vitis vinifera) using supercritical carbon dioxide. J Supercrit Fluid 55: 924–928.
  • Yılmaz, İ., (2010) Antioksidan içeren bazı gıdalar ve oksidatif stres. İnönü Üniv Tıp Fak Derg 17(2): 143–153.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Konular Gıda Mühendisliği, Ziraat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Onur Sevindik Bu kişi benim

Serkan Selli

Yayımlanma Tarihi 29 Temmuz 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 31 Sayı: 2

Kaynak Göster

APA Sevindik, O., & Selli, S. (2016). Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 31(2), 9-16.
AMA Sevindik O, Selli S. Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri. Çukurova Tarım Gıda Bil. Der. Temmuz 2016;31(2):9-16.
Chicago Sevindik, Onur, ve Serkan Selli. “Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 31, sy. 2 (Temmuz 2016): 9-16.
EndNote Sevindik O, Selli S (01 Temmuz 2016) Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri. Çukurova Tarım ve Gıda Bilimleri Dergisi 31 2 9–16.
IEEE O. Sevindik ve S. Selli, “Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri”, Çukurova Tarım Gıda Bil. Der., c. 31, sy. 2, ss. 9–16, 2016.
ISNAD Sevindik, Onur - Selli, Serkan. “Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri”. Çukurova Tarım ve Gıda Bilimleri Dergisi 31/2 (Temmuz 2016), 9-16.
JAMA Sevindik O, Selli S. Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri. Çukurova Tarım Gıda Bil. Der. 2016;31:9–16.
MLA Sevindik, Onur ve Serkan Selli. “Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, c. 31, sy. 2, 2016, ss. 9-16.
Vancouver Sevindik O, Selli S. Üzüm Çekirdeklerinin Temel Biyoaktif Bileşenleri. Çukurova Tarım Gıda Bil. Der. 2016;31(2):9-16.

Çukurova Üniversitesi Ziraat Fakültesi Dergisi” yayın hayatına 1 Ocak 2016 tarihi itibariyle “Çukurova Tarım ve Gıda Bilimleri Dergisi” adıyla devam etmektedir.


logo_224x57_white.gif       ResearchBib User Pictureroot indexing ile ilgili görsel sonucu