Araştırma Makalesi
BibTex RIS Kaynak Göster

Demiryolu Araçlarında Aktif Süspansiyon Sistemi için Kontrolcü Tasarımı

Yıl 2025, Sayı: 22, 1 - 9, 31.07.2025
https://doi.org/10.47072/demiryolu.1616100

Öz

Bu çalışmada, demiryolu araçlarında yolcu konforunu artırmak amacıyla aktif süspansiyon sistemi için bir kontrolcü tasarımı gerçekleştirilmiştir. Konvansiyonel pasif süspansiyon sistemleri belirli yol ve hız koşullarında yeterli performans sağlayamamakta ve özellikle yüksek hızlı tren uygulamalarında titreşim bastırma açısından yetersiz kalmaktadır. Bu nedenle çalışmada, çeyrek araç modeli temel alınarak, lineer kuadratik regülatör yaklaşımıyla bir durum geri beslemeli kontrolcü tasarlanmış ve etkinliği 5 cm’lik yanal bozulma girdisi altında test edilmiştir. Kontrolsüz sistem marjinal kararlı davranış sergilerken, tasarlanan kontrolcü sayesinde sistem asimptotik kararlılığa ulaşmış ve gövde sapması ile gövde ivmesi önemli ölçüde azaltılarak konfor seviyesinde belirgin bir iyileşme sağlanmıştır. Elde edilen sonuçlar, aktif süspansiyon sistemlerinin demiryolu araçlarında konfor artırımı açısından etkili bir çözüm sunduğunu göstermektedir.

Kaynakça

  • [1] D. Pamučar, M. Ćirović, and S. Ćirović, "Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transport Systems," Energies, vol. 14, no. 16, p. 5211, Aug. 2021.
  • [2] B. Fu, R. L. Giossi, R. Persson, S. Stichel, S. Bruni, and R. Goodall, “Active suspension in railway vehicles: a literature survey,” Railway Engineering Science, vol. 28, no. 1, pp. 3–35, Mar. 2020, doi: 10.1007/s40534-020-00207-w.
  • [3] A. Orvnäs, S. Stichel, and R. Persson, “Active lateral secondary suspension with H∞ control to improve ride comfort: Simulations on a full-scale model,” Veh. Syst. Dyn., vol. 49, no. 9, pp. 1409–1422, Sep. 2011, doi: 10.1080/00423114.2010.527011.
  • [4] T. Jin, Z. Liu, S. Sun, Z. Ren, L. Deng, B. Yang, M. D. Christie, and W. Li, “Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles,” Mech. Syst. Signal Process., vol. 135, p. 106338, 2020, doi: 10.1016/j.ymssp.2019.106338.
  • [5] A. Urooj and A.-W. A. Saif, “Modeling of a rail vehicle's active suspension system to reduce vibrations using an LQR,” in Proc. 21st Int. Multi-Conf. on Systems, Signals & Devices (SSD), 2024, pp. 457–464, doi: 10.1109/SSD61670.2024.10548734.
  • [6] M. Metin and R. Güçlü, “Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method,” Turk. J. Electr. Eng. Comput. Sci., vol. 19, no. 5, pp. 807–816, 2011, doi: 10.3906/elk-1001-394.
  • [7] M. Metin and R. Güçlü, “Rail vehicle vibrations control using parameters adaptive PID controller,” Math. Probl. Eng., vol. 2014, Article ID 728946, 10 pages, Apr. 2014, doi: 10.1155/2014/728946.
  • [8] Q. Zhu, J.-J. Ding, and M.-L. Yang, “LQG control based lateral active secondary and primary suspensions of high-speed train for ride quality and hunting stability,” IET Control Theory Appl., vol. 12, no. 10, pp. 1497–1504, Oct. 2018, doi: 10.1049/iet-cta.2017.0529.
  • [9] Q. Zhu, L. Li, C.-J. Chen, C.-Z. Liu, and G.-D. Hu, “A low-cost lateral active suspension system of the high-speed train for ride quality based on the resonant control method,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4187–4196, May 2018, doi: 10.1109/TIE.2017.2767547.
  • [10] Y. C. Zeng, W. H. Zhang, and D. L. Song, “Lateral-vertical coupled active suspension on railway vehicle and optimal control methods,” Veh. Syst. Dyn., pp. 1–23, Sep. 2020, doi: 10.1080/00423114.2020.1814358.
  • [11] M. Metin and F. C. Yılmaz, “Yüksek hızlı demiryolu araçlarında düşey titreşimlerin doğrusal olmayan uyarlamalı kontrol ile yarı aktif kontrolü,” Mühendis ve Makina, vol. 62, no. 703, pp. 350–371, Apr.–Jun. 2021, doi: 10.46399/muhendismakina.849808.
  • [12] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic systems. 6th ed. Upper Saddle River, NJ, USA: Pearson Education, 2010.
  • [13] K. Ogata, Modern control engineering. 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2010.
  • [14] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. Englewood Cliffs, NJ, USA: Prentice Hall, 1996.
  • [15] MathWorks, Natick, MA, USA, Control System Toolbox User’s Guide, R2024a ed., 2024. Accessed: Apr. 14, 2025. [Online]. Available: https://www.mathworks.com/products/control.html.

Controller Design for Active Suspension System in Railway Vehicles

Yıl 2025, Sayı: 22, 1 - 9, 31.07.2025
https://doi.org/10.47072/demiryolu.1616100

Öz

In this study, a controller is designed for an active suspension system in railway vehicles to improve passenger comfort. Conventional passive suspension systems may not provide adequate performance under varying track and speed conditions, and are particularly insufficient in suppressing vibrations in high-speed train applications. Therefore, a state feedback controller based on the linear quadratic regulator approach is designed using a quarter vehicle model and tested under a 5 cm lateral disturbance input. While the uncontrolled system exhibits marginally stable behavior, the proposed controller ensures asymptotic stability and significantly reduces body displacement and acceleration, leading to a noticeable improvement in ride comfort. The results demonstrate that active suspension systems offer an effective solution for enhancing comfort in railway vehicles.

Kaynakça

  • [1] D. Pamučar, M. Ćirović, and S. Ćirović, "Railway Vehicle Energy Efficiency as a Key Factor in Creating Sustainable Transport Systems," Energies, vol. 14, no. 16, p. 5211, Aug. 2021.
  • [2] B. Fu, R. L. Giossi, R. Persson, S. Stichel, S. Bruni, and R. Goodall, “Active suspension in railway vehicles: a literature survey,” Railway Engineering Science, vol. 28, no. 1, pp. 3–35, Mar. 2020, doi: 10.1007/s40534-020-00207-w.
  • [3] A. Orvnäs, S. Stichel, and R. Persson, “Active lateral secondary suspension with H∞ control to improve ride comfort: Simulations on a full-scale model,” Veh. Syst. Dyn., vol. 49, no. 9, pp. 1409–1422, Sep. 2011, doi: 10.1080/00423114.2010.527011.
  • [4] T. Jin, Z. Liu, S. Sun, Z. Ren, L. Deng, B. Yang, M. D. Christie, and W. Li, “Development and evaluation of a versatile semi-active suspension system for high-speed railway vehicles,” Mech. Syst. Signal Process., vol. 135, p. 106338, 2020, doi: 10.1016/j.ymssp.2019.106338.
  • [5] A. Urooj and A.-W. A. Saif, “Modeling of a rail vehicle's active suspension system to reduce vibrations using an LQR,” in Proc. 21st Int. Multi-Conf. on Systems, Signals & Devices (SSD), 2024, pp. 457–464, doi: 10.1109/SSD61670.2024.10548734.
  • [6] M. Metin and R. Güçlü, “Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method,” Turk. J. Electr. Eng. Comput. Sci., vol. 19, no. 5, pp. 807–816, 2011, doi: 10.3906/elk-1001-394.
  • [7] M. Metin and R. Güçlü, “Rail vehicle vibrations control using parameters adaptive PID controller,” Math. Probl. Eng., vol. 2014, Article ID 728946, 10 pages, Apr. 2014, doi: 10.1155/2014/728946.
  • [8] Q. Zhu, J.-J. Ding, and M.-L. Yang, “LQG control based lateral active secondary and primary suspensions of high-speed train for ride quality and hunting stability,” IET Control Theory Appl., vol. 12, no. 10, pp. 1497–1504, Oct. 2018, doi: 10.1049/iet-cta.2017.0529.
  • [9] Q. Zhu, L. Li, C.-J. Chen, C.-Z. Liu, and G.-D. Hu, “A low-cost lateral active suspension system of the high-speed train for ride quality based on the resonant control method,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4187–4196, May 2018, doi: 10.1109/TIE.2017.2767547.
  • [10] Y. C. Zeng, W. H. Zhang, and D. L. Song, “Lateral-vertical coupled active suspension on railway vehicle and optimal control methods,” Veh. Syst. Dyn., pp. 1–23, Sep. 2020, doi: 10.1080/00423114.2020.1814358.
  • [11] M. Metin and F. C. Yılmaz, “Yüksek hızlı demiryolu araçlarında düşey titreşimlerin doğrusal olmayan uyarlamalı kontrol ile yarı aktif kontrolü,” Mühendis ve Makina, vol. 62, no. 703, pp. 350–371, Apr.–Jun. 2021, doi: 10.46399/muhendismakina.849808.
  • [12] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic systems. 6th ed. Upper Saddle River, NJ, USA: Pearson Education, 2010.
  • [13] K. Ogata, Modern control engineering. 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2010.
  • [14] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control. Englewood Cliffs, NJ, USA: Prentice Hall, 1996.
  • [15] MathWorks, Natick, MA, USA, Control System Toolbox User’s Guide, R2024a ed., 2024. Accessed: Apr. 14, 2025. [Online]. Available: https://www.mathworks.com/products/control.html.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kontrol Teorisi ve Uygulamaları, Dinamikler, Titreşim ve Titreşim Kontrolü
Bölüm Araştırma Makalesi
Yazarlar

Süleyman Mert Özer 0000-0001-5019-629X

Gönderilme Tarihi 8 Ocak 2025
Kabul Tarihi 25 Nisan 2025
Yayımlanma Tarihi 31 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 22

Kaynak Göster

IEEE [1]S. M. Özer, “Demiryolu Araçlarında Aktif Süspansiyon Sistemi için Kontrolcü Tasarımı”, Demiryolu Mühendisliği, sy 22, ss. 1–9, Tem. 2025, doi: 10.47072/demiryolu.1616100.