Araştırma Makalesi
BibTex RIS Kaynak Göster

Demiryollarında Ön Germeli Traverslerin Farklı İşletme Yükleri Altında Mekanik Analizi

Yıl 2021, Sayı: 13, 115 - 121, 31.01.2021
https://doi.org/10.47072/demiryolu.832641

Öz

Demiryollarında altyapı ve üstyapı en önemli bileşenler arasında yer almakta ve zorlu çevresel koşullara maruz kalmaktadır. Dinamik ve statik yükleri taşıyan, farklı iklim şartları altında çevresel koşullardan öncelikli olarak demiryolu altyapı ve üstyapı sistemleri etkilenmektedir. Bu çalışmada, demiryolu sistemleri için kritik bileşenler arasında yer alan ve Türkiye Cumhuriyeti Devlet Demiryolları (TCDD) bünyesinde ağırlıklı olarak kullanılan B70 ön germeli beton traverslerin farklı yükleme koşulları altında mekanik davranışları sonlu elemanlar yöntemi kullanılarak analiz edilmiştir. Sonlu elemanlar modeli zemin dolgu, alt balast ve balast katmanları; SKL14 tipi ray kıskacı, kauçuk malzemeden üretilmiş ray pedi, ray, travers ve demiryolu tekerinden oluşmaktadır. Analiz sonucu elde edilen deformasyon değerleri aynı yükler altında yapılmış deneysel çalışma sonuçlarıyla karşılaştırılmıştır. Geliştirilen sonlu elemanlar modeli sonucu elde edilen analiz sonuçlarının deneysel sonuçlarla uyumlu olduğu anlaşılmıştır.

Kaynakça

  • [1] M. Shahraki, C. Warnakulasooriya, and K. J. Witt, “Numerical study of transition zone between ballasted and ballastless railway track,” Transp. Geotech., vol. 3, pp. 58–67, 2015, doi: 10.1016/j.trgeo.2015.05.001.
  • [2] K. Oğul, U. Mutman, and E. Poşluk, “Yüksek hızlı demiryollarında kullanılan yaklaşım dolgu modellerinin sayısal analiz ile değerlendirilmesi,” Demiryolu Mühendisliği, no. 10, pp. 46–53, 2019.
  • [3] Q. Wu, et al., “Railway track longitudinal force model,” Veh. Syst. Dyn., vol. 0, no. 0, pp. 1–16, 2019, doi: 10.1080/00423114.2019.1673445.
  • [4] A. Strauss et al., “Nonlinear finite element analysis of continuous welded rail–bridge interaction: monitoring-based calibration,” J. Civ. Eng. Manag., vol. 24, no. 4, pp. 344–354, 2018, doi: 10.3846/jcem.2018.3050.
  • [5] E. Di Gialleonardo, F. Braghin, and S. Bruni, “The influence of track modelling options on the simulation of rail vehicle dynamics,” J. Sound Vib., vol. 331, no. 19, pp. 4246–4258, 2012, doi: 10.1016/j.jsv.2012.04.024.
  • [6] L. Auersch, “Dynamic axle loads on tracks with and without ballast mats: numerical results of three-dimensional vehicle-track-soil models,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 220, no. 2, pp. 169–183, 2006, doi: 10.1243/09544097F00105.
  • [7] D. P. Connolly et al., “Benchmarking railway vibrations - track, vehicle, ground and building effects,” Constr. Build. Mater., vol. 92, pp. 64–81, 2015, doi: 10.1016/j.conbuildmat.2014.07.042.
  • [8] R. Silva et al., “Experimental and numerical analyses of the failure of prestressed concrete railway sleepers,” Materials (Basel)., vol. 13, no. 7, 2020, doi: 10.3390/ma13071704.
  • [9] S. Kaewunruen and A. M. Remennikov, “Impact capacity of railway prestressed concrete sleepers,” Eng. Fail. Anal., vol. 16, no. 5, pp. 1520–1532, 2009, doi: 10.1016/j.engfailanal.2008.09.026.
  • [10] S. Kaewunruen and A. M. Remennikov, “Nonlinear finite element modeling of railway prestressed concrete sleeper,” Real Struct. Bridg. Tall Build. - Proc. 10th East Asia-Pacific Conf. Struct. Eng. Constr. EASEC 2010, vol. 4, pp. 323–328, 2006.
  • [11] TCDD, “Ön germe-ön çekmeli beton travers teknik şartnamesi,” Ankara, 2011.
  • [12] A. Paixão et al., “Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges,” Eng. Struct., vol. 164, no. September 2017, pp. 169–182, 2018, doi: 10.1016/j.engstruct.2018.03.005.
  • [13] EN 13674-1, “Railway applications - Track - Rail - Part 1: Vignole railway rails 46 kg/m and above applications,” 2013.
  • [14] S. Mohammadzadeh, S. Ahadi, and H. Keshavarzian, “Assessment of fracture reliability analysis of crack growth in spring clip type Vossloh SKL14,” Proc. Inst. Mech. Eng. Part O J. Risk Reliab., vol. 228, no. 5, pp. 460–468, 2014, doi: 10.1177/1748006X14527926.
  • [15] TCDD, CAF, and Geminys, “Operators Manual,” 2008.
  • [16] R. Gustavson, “Static and dynamic finite element analyses of concrete sleepers,” pp. 49–66, 2000.

Mechanical analysis of prestressed sleepers under various operational loads in railways

Yıl 2021, Sayı: 13, 115 - 121, 31.01.2021
https://doi.org/10.47072/demiryolu.832641

Öz

In railways rail infrastructure and superstructure are the key components that works under harsh environmental conditions. Infrastructure and superstructure systems carries static and dynamic loads and are primarily imposed of various climate conditions. In this study, B70 prestressed concrete sleepers that are frequently used in Turkish State Railways are analysed by using finite element method for mechanical response under various loading conditions. Finite element model includes primary components of the systems such as, landfill, sub-ballast and ballast layers; SKL14 rail clip, rubber-based rail pad, rail, sleeper and vehicle wheel. Obtained deflection values with finite element results are compared and validated with the experimental work done at the same loading conditions. It is concluded that finite element results with developed model are compatible with the experimental results.

Kaynakça

  • [1] M. Shahraki, C. Warnakulasooriya, and K. J. Witt, “Numerical study of transition zone between ballasted and ballastless railway track,” Transp. Geotech., vol. 3, pp. 58–67, 2015, doi: 10.1016/j.trgeo.2015.05.001.
  • [2] K. Oğul, U. Mutman, and E. Poşluk, “Yüksek hızlı demiryollarında kullanılan yaklaşım dolgu modellerinin sayısal analiz ile değerlendirilmesi,” Demiryolu Mühendisliği, no. 10, pp. 46–53, 2019.
  • [3] Q. Wu, et al., “Railway track longitudinal force model,” Veh. Syst. Dyn., vol. 0, no. 0, pp. 1–16, 2019, doi: 10.1080/00423114.2019.1673445.
  • [4] A. Strauss et al., “Nonlinear finite element analysis of continuous welded rail–bridge interaction: monitoring-based calibration,” J. Civ. Eng. Manag., vol. 24, no. 4, pp. 344–354, 2018, doi: 10.3846/jcem.2018.3050.
  • [5] E. Di Gialleonardo, F. Braghin, and S. Bruni, “The influence of track modelling options on the simulation of rail vehicle dynamics,” J. Sound Vib., vol. 331, no. 19, pp. 4246–4258, 2012, doi: 10.1016/j.jsv.2012.04.024.
  • [6] L. Auersch, “Dynamic axle loads on tracks with and without ballast mats: numerical results of three-dimensional vehicle-track-soil models,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 220, no. 2, pp. 169–183, 2006, doi: 10.1243/09544097F00105.
  • [7] D. P. Connolly et al., “Benchmarking railway vibrations - track, vehicle, ground and building effects,” Constr. Build. Mater., vol. 92, pp. 64–81, 2015, doi: 10.1016/j.conbuildmat.2014.07.042.
  • [8] R. Silva et al., “Experimental and numerical analyses of the failure of prestressed concrete railway sleepers,” Materials (Basel)., vol. 13, no. 7, 2020, doi: 10.3390/ma13071704.
  • [9] S. Kaewunruen and A. M. Remennikov, “Impact capacity of railway prestressed concrete sleepers,” Eng. Fail. Anal., vol. 16, no. 5, pp. 1520–1532, 2009, doi: 10.1016/j.engfailanal.2008.09.026.
  • [10] S. Kaewunruen and A. M. Remennikov, “Nonlinear finite element modeling of railway prestressed concrete sleeper,” Real Struct. Bridg. Tall Build. - Proc. 10th East Asia-Pacific Conf. Struct. Eng. Constr. EASEC 2010, vol. 4, pp. 323–328, 2006.
  • [11] TCDD, “Ön germe-ön çekmeli beton travers teknik şartnamesi,” Ankara, 2011.
  • [12] A. Paixão et al., “Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges,” Eng. Struct., vol. 164, no. September 2017, pp. 169–182, 2018, doi: 10.1016/j.engstruct.2018.03.005.
  • [13] EN 13674-1, “Railway applications - Track - Rail - Part 1: Vignole railway rails 46 kg/m and above applications,” 2013.
  • [14] S. Mohammadzadeh, S. Ahadi, and H. Keshavarzian, “Assessment of fracture reliability analysis of crack growth in spring clip type Vossloh SKL14,” Proc. Inst. Mech. Eng. Part O J. Risk Reliab., vol. 228, no. 5, pp. 460–468, 2014, doi: 10.1177/1748006X14527926.
  • [15] TCDD, CAF, and Geminys, “Operators Manual,” 2008.
  • [16] R. Gustavson, “Static and dynamic finite element analyses of concrete sleepers,” pp. 49–66, 2000.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Bilimsel Yayınlar (Hakemli Araştırma ve Derleme Makaleler)
Yazarlar

Yasin Sarıkavak 0000-0002-3573-6179

Yayımlanma Tarihi 31 Ocak 2021
Gönderilme Tarihi 27 Kasım 2020
Yayımlandığı Sayı Yıl 2021 Sayı: 13

Kaynak Göster

IEEE Y. Sarıkavak, “Demiryollarında Ön Germeli Traverslerin Farklı İşletme Yükleri Altında Mekanik Analizi”, Demiryolu Mühendisliği, sy. 13, ss. 115–121, Ocak 2021, doi: 10.47072/demiryolu.832641.