Hidrojenle Çalışan Demiryolu Araçlarında Kullanılan Hidrojen Tüplerinin Yüksek Hızlı Darbeye Karşı Dirençlerinin Sonlu Elemanlar Yöntemi ile İncelenmesi
Yıl 2021,
Sayı: 14, 180 - 188, 31.07.2021
Nihat Akkuş
,
Abdülkadir Ünal
,
Garip Genç
Öz
Hidrojen enerjisi dizel tren setlerinin yol açtığı hava kirliliği, gürültü kirliliği gibi dezavantajları ortadan kaldırdığı gibi elektrikli tren setlerinin ihtiyaç duyduğu pahalı elektrifikasyon alt yapısı ve görüntü kirliliğinin de olumsuz etkilerini ortadan kaldırmaktadır. Bu olumlu özelliklere karşı hidrojenin yüksek basınç altında depolanması gerekmektedir. Bu çalışmada hidrojenin alternatif bir enerji kaynağı olarak demiryolu araçlarında kullanılması ve hidrojen tüplerinin yüksek hızlı darbeye karşı dirençleri sonlu elemanlar yöntemi ile incelenmiştir. Bu amaçla yüksek iç basıncı olan ve olmayan Karbon Fiberle Güçlendirilmiş Plastik (CFRP) kompozit tüp üzerine darbe yüklemesinin etkisi FEM simülasyonu ile araştırılmıştır. Alüminyum silindirli ve karbon fiber ile sarılmış kompozit tüp 3 boyutlu model kullanılarak simüle edilmiştir. MARC-Mentat ticari kodu, hesaplama aracı olarak seçilmiştir. Silindirin geometrisi, Mentat ön-son arayüz yazılımı kullanılarak oluşturulmuştur. Alüminyum 6061T astar ve TORAY T 700SC + Epoksi kompozit katmanların malzeme özellikleri sırasıyla izotropik ve ortografik olarak simülasyonlara dâhil edilmiştir. Tüpün kubbe bölgesi simülasyonlara dâhil edilmemiştir. Simülasyonun modeli, başka bir araştırmacı tarafından yapılan gerçek deney dikkate alınarak oluşturulmuştur. Simülasyonların sonuçları, çarpma tertibatı hasarı altındaki bazı bölgelerin, genellikle inanılan gerilim deformasyonundan ziyade sıkıştırma gerilmelerine maruz kalacağını göstermektedir.
Kaynakça
- [1] P. Edwards, V. Kuznetsov, D. Bill, “Hydrogen energy,” Philosophical transactions of the royal society a mathematical and engineering sciences, vol. 365 no. 1853, pp. 1043-1056, 2007, doi: 10.1098/rsta.2006.1965
- [2] I. Blagojevic, S. Mitic, “Hydrogen as a vehicle fuel,” Mobility and vehicle mechanics, vol. 44, no. 2, pp. 37-49, 2018, doi: 10.24874/mvm.2018.44.02.04
- [3] Y. Ruf, T. Zorn, P. Neve, P. Andrae, S. Erofeeva, F. Garrison, “Report 3,” Study on the use of fuel cells & hydrogen in the railway environment, 2019.
- [4] M. Akhoundzadeh, K. Raahemifar, S. Panchal, E. Samandi, E. Haghi, R. Fraser, M. Fowler, “A conceptualized hydrail powertrain: A case study of the union pearson express route,” World electric vehicle journal, vol. 10, pp. 2019 doi: 10.3390/wevj10020032
- [5] O. Bethoux, “Hydrogen fuel cell road vehicles and their infrastructure: An option towards an environmentally friendly energy transition,” Energies, vol. 13, pp. 1-27, 2020, doi: 10.3390/en13226132
- [6] A. Hoffrichter, “Hydrogen as an energy carrier for railway traction,” Ph. D. dissertation, Dept. Mech. Eng., University of Birmingham, 2013.
- [7] E. Rivard, M. Trudeau, K. Zaghib, “Hydrogen storage for mobility: A review,” Materials, vol. 12, pp. 1-22, 2019, doi: 10.3390/ma12121973
- [8] N. K. Naik, P. Shrirao, B.C.K. Reddy, “Ballistic impact behaviour of woven fabric composites: Formulation,” International journal of impact engineering, vol. 14, no. 9, pp. 1521-1552, 2006, doi: 10.1016/j.ijimpeng.2005.01.004
- [9] V. B. C. Tan, T. W. Ching, “Computational simulation of fabric armour subjected to ballistic impacts ,”International journal of impact engineering, vol. 32, no. 11, pp. 1737-1751, 2006, doi: 10.1016/j.ijimpeng.2005.05.006
- [10] Y. Duan, M. Keefe, T.A. Bogetti, B. A. Cheeseman, B. Powers, “A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact,” International journal of impact engineering, vol. 32, no. 8, pp. 1299-1312, 2006, doi: 10.1016/j.ijimpeng.2004.11.005
- [11] Z. Fawaz, K. Behdinan, Y. Xu, “Optimum design of two-component composite armours against high-speed impact,” Composite structures, vol. 73, no. 3, pp. 253-262, 2006, doi: 10.1016/j.compstruct.2005.01.037
- [12] M. Ubeyli, R. O. Yildirim, B. Ogel, “On the comparison of the ballistic performance of steel and laminated composite armors,” Materials & design, vol. 28, no. 4, pp. 1257-1262, 2007, doi: 10.1016/j.matdes.2005.12.005
- [13] V. Lopresto, V. Melito, C. Leone, G. Caprino, “Effect of stitches on the impact behaviour of graphite/epoxy composites,” Composites science and technology, vol. 66 no. 2, pp. 206-214, 2006, doi: 10.1016/j.compscitech.2005.04.029
- [14] Y. Duan, M. Keefe, T. A. Bogetti, B. Powers, “Finite element modeling of transverse impact on a ballistic fabric,” International journal of mechanical sciences, vol. 48, no. 1, pp. 33-43, 2006, doi: 10.1016/j.ijmecsci.2005.09.007
- [15] A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, D. P. Papapostolou, “The static and dynamic axial collapse of CFRP square tubes: Finite element modelling,” Composite structures, vol. 74, no. 2 pp. 213-225, 2006, doi: 10.1016/j.compstruct.2005.04.006
- [16] M. R. Abdullah, W. J. Cantwell, “The impact resistance of polypropylene-based fibre–metal laminates,” Composites science and technology, vol. 66, no. 11, pp. 1682-1693, 2006, doi: 10.1016/j.compscitech.2005.11.008
- [17] U. K. Vaidya, S. Pillay, S. Bartus, C. Ulven, D. Grow, B. Mathew, Impact and post-impact vibration response of protective metal foam composite sandwich plates,” Materials science and engineering: A, vol. 428, no. 1, pp. 59-65, 2006, doi: 10.1016/j.msea.2006.04.114
- [18] G. Gaprino, V. Lopresto, D. Santoro, “Ballistic impact behaviour of stitched graphite/epoxy laminates,” Composites science and technology, vol. 67, no. 4, pp. 325-335, 2007, doi: 10.1016/j.compscitech.2006.04.015
- [19] MARC User’s Guide, Volume A – Theory and user information, MARC analysis research corporation, 2007
- [20] MARC user’s guide, Volume B-element library, MARC analysis research corporation, pp. 33-43, 2007
- [21] S. Wakayama, S. Kobayashi, T. Imai, T. Matsumoto, “Evaluation of burst strength of FW-FRP composite pipes after impact using pitch-based low-modulus carbon fiber,” Composites part A: Applied science and manufacturing, vol. 37, no. 11, pp. 2002-2010, 2006, doi: 10.1016/j.compositesa.2005.12.010
- [22] S. Abrate, “Modelling of impacts on composite structures,” Composite structures, vol. 51, no. 2, pp. 129-138, 2001, doi: 10.1016/S0263-8223(00)00138-0
- [23] S. Gholizadeh, “A review of impact behaviour in composite materials,” International Journal of Mechanical and Production Engineering, vol. 7, no. 3, 2019
- [24] L. Shunfeng, X. Guo, L. Qing, S. Guangyong, “On lateral crashworthiness of aluminum/composite hybrid structures, Composite Structures, vol. 245, 2020, doi: 10.1016/j.compstruct.2020.112334
- [25] S. Parida, P. Jena, “Design and finite element analysis of thick walled laminated composite pressure vessel,” International journal of innovative technology and exploring engineering, vol. 8 no. 10, 2019
Investigation of High Speed Impact Resistance of Hydrogen Tubes Used in Hydrogen-Powered Railway Vehicles by Finite Element Method
Yıl 2021,
Sayı: 14, 180 - 188, 31.07.2021
Nihat Akkuş
,
Abdülkadir Ünal
,
Garip Genç
Öz
Hydrogen energy eliminates the disadvantages such as air pollution and noise pollution caused by diesel train sets, as well as the negative effects such as expensive electrification infrastructure and visual pollution required by electric train sets. Against these positive properties, hydrogen must be stored under high pressure. In this study, the use of hydrogen as an alternative energy source in railway vehicles and the high-speed impact resistance of hydrogen tubes were investigated by the finite element method. The effect of impact loading on Carbon Fiber Reinforced Plastic (CFRP) composite tubes without and with high internal pressure has been investigated by FEM simulation for this purpose. The composite tube which has an Aluminum cylinder and wound by carbon fiber was simulated by using the 3-D model. MARC-Mentat commercial code has been selected as a computational tool. The geometry of the cylinder has been generated using Mentat pre-post interface software. The material properties of the Aluminum 6061T liner and TORAY T-700SC + Epoxy composite layers have been included in the simulations as isotropic and orthographic, respectively. The dome region of the vessel has not been included in the simulations. The model of the simulation has been created by considering the real experiment which has been conducted by another researcher. The results of the simulations show that some zones under the impactor damage would face compressions stresses rather than tensional deformation, which is generally believed.
Kaynakça
- [1] P. Edwards, V. Kuznetsov, D. Bill, “Hydrogen energy,” Philosophical transactions of the royal society a mathematical and engineering sciences, vol. 365 no. 1853, pp. 1043-1056, 2007, doi: 10.1098/rsta.2006.1965
- [2] I. Blagojevic, S. Mitic, “Hydrogen as a vehicle fuel,” Mobility and vehicle mechanics, vol. 44, no. 2, pp. 37-49, 2018, doi: 10.24874/mvm.2018.44.02.04
- [3] Y. Ruf, T. Zorn, P. Neve, P. Andrae, S. Erofeeva, F. Garrison, “Report 3,” Study on the use of fuel cells & hydrogen in the railway environment, 2019.
- [4] M. Akhoundzadeh, K. Raahemifar, S. Panchal, E. Samandi, E. Haghi, R. Fraser, M. Fowler, “A conceptualized hydrail powertrain: A case study of the union pearson express route,” World electric vehicle journal, vol. 10, pp. 2019 doi: 10.3390/wevj10020032
- [5] O. Bethoux, “Hydrogen fuel cell road vehicles and their infrastructure: An option towards an environmentally friendly energy transition,” Energies, vol. 13, pp. 1-27, 2020, doi: 10.3390/en13226132
- [6] A. Hoffrichter, “Hydrogen as an energy carrier for railway traction,” Ph. D. dissertation, Dept. Mech. Eng., University of Birmingham, 2013.
- [7] E. Rivard, M. Trudeau, K. Zaghib, “Hydrogen storage for mobility: A review,” Materials, vol. 12, pp. 1-22, 2019, doi: 10.3390/ma12121973
- [8] N. K. Naik, P. Shrirao, B.C.K. Reddy, “Ballistic impact behaviour of woven fabric composites: Formulation,” International journal of impact engineering, vol. 14, no. 9, pp. 1521-1552, 2006, doi: 10.1016/j.ijimpeng.2005.01.004
- [9] V. B. C. Tan, T. W. Ching, “Computational simulation of fabric armour subjected to ballistic impacts ,”International journal of impact engineering, vol. 32, no. 11, pp. 1737-1751, 2006, doi: 10.1016/j.ijimpeng.2005.05.006
- [10] Y. Duan, M. Keefe, T.A. Bogetti, B. A. Cheeseman, B. Powers, “A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact,” International journal of impact engineering, vol. 32, no. 8, pp. 1299-1312, 2006, doi: 10.1016/j.ijimpeng.2004.11.005
- [11] Z. Fawaz, K. Behdinan, Y. Xu, “Optimum design of two-component composite armours against high-speed impact,” Composite structures, vol. 73, no. 3, pp. 253-262, 2006, doi: 10.1016/j.compstruct.2005.01.037
- [12] M. Ubeyli, R. O. Yildirim, B. Ogel, “On the comparison of the ballistic performance of steel and laminated composite armors,” Materials & design, vol. 28, no. 4, pp. 1257-1262, 2007, doi: 10.1016/j.matdes.2005.12.005
- [13] V. Lopresto, V. Melito, C. Leone, G. Caprino, “Effect of stitches on the impact behaviour of graphite/epoxy composites,” Composites science and technology, vol. 66 no. 2, pp. 206-214, 2006, doi: 10.1016/j.compscitech.2005.04.029
- [14] Y. Duan, M. Keefe, T. A. Bogetti, B. Powers, “Finite element modeling of transverse impact on a ballistic fabric,” International journal of mechanical sciences, vol. 48, no. 1, pp. 33-43, 2006, doi: 10.1016/j.ijmecsci.2005.09.007
- [15] A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, D. P. Papapostolou, “The static and dynamic axial collapse of CFRP square tubes: Finite element modelling,” Composite structures, vol. 74, no. 2 pp. 213-225, 2006, doi: 10.1016/j.compstruct.2005.04.006
- [16] M. R. Abdullah, W. J. Cantwell, “The impact resistance of polypropylene-based fibre–metal laminates,” Composites science and technology, vol. 66, no. 11, pp. 1682-1693, 2006, doi: 10.1016/j.compscitech.2005.11.008
- [17] U. K. Vaidya, S. Pillay, S. Bartus, C. Ulven, D. Grow, B. Mathew, Impact and post-impact vibration response of protective metal foam composite sandwich plates,” Materials science and engineering: A, vol. 428, no. 1, pp. 59-65, 2006, doi: 10.1016/j.msea.2006.04.114
- [18] G. Gaprino, V. Lopresto, D. Santoro, “Ballistic impact behaviour of stitched graphite/epoxy laminates,” Composites science and technology, vol. 67, no. 4, pp. 325-335, 2007, doi: 10.1016/j.compscitech.2006.04.015
- [19] MARC User’s Guide, Volume A – Theory and user information, MARC analysis research corporation, 2007
- [20] MARC user’s guide, Volume B-element library, MARC analysis research corporation, pp. 33-43, 2007
- [21] S. Wakayama, S. Kobayashi, T. Imai, T. Matsumoto, “Evaluation of burst strength of FW-FRP composite pipes after impact using pitch-based low-modulus carbon fiber,” Composites part A: Applied science and manufacturing, vol. 37, no. 11, pp. 2002-2010, 2006, doi: 10.1016/j.compositesa.2005.12.010
- [22] S. Abrate, “Modelling of impacts on composite structures,” Composite structures, vol. 51, no. 2, pp. 129-138, 2001, doi: 10.1016/S0263-8223(00)00138-0
- [23] S. Gholizadeh, “A review of impact behaviour in composite materials,” International Journal of Mechanical and Production Engineering, vol. 7, no. 3, 2019
- [24] L. Shunfeng, X. Guo, L. Qing, S. Guangyong, “On lateral crashworthiness of aluminum/composite hybrid structures, Composite Structures, vol. 245, 2020, doi: 10.1016/j.compstruct.2020.112334
- [25] S. Parida, P. Jena, “Design and finite element analysis of thick walled laminated composite pressure vessel,” International journal of innovative technology and exploring engineering, vol. 8 no. 10, 2019