Araştırma Makalesi
BibTex RIS Kaynak Göster

DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ

Yıl 2019, , 19 - 36, 13.09.2019
https://doi.org/10.18613/deudfd.614818

Öz

Tek seferde çok büyük yükler taşıma kapasitesine sahip nakliye araçları
olan gemiler, dünya ticaretinin belkemiğidir. Gemiler, dünyadaki toplam
ticaretin % 90 kadarını oluştursa da kullandıkları yakıt ve makineler nedeniyle
büyük miktarda emisyon oluşumuna yol açarlar. Bu çalışmada İskenderun-Şangay
arasında belli bir miktar yükün farklı taşıma kapasitelerine sahip beş adet
gemiyle ayrı ayrı taşındığı varsayılmış ve bu yolculuklar sonucunda oluşan
emisyon miktarları, bu emisyonların sosyal ve yakıt maliyetleri, gemilerin bu
yolculuklardan elde ettikleri gelir ve net kazançlar ile sosyal kayıplar
hesaplanmıştır. Yapılan hesaplamalar sonucunda yükün büyük tek bir gemi
tarafından taşınmasının hem emisyon üretimi hem de maliyet açısından en
mantıklı senaryo olduğu bulunmuştur. Elde edilen bulgulara göre yükün tek
gemiyle taşınması sırasında toplam 8.418,32 t emisyon oluşmakta, bu
emisyonlardan dolayı toplam $ 17.008.992,91 civarında sosyal maliyet oluşacağı
hesaplanmıştır. Aynı yolculuktaki net kazanç yaklaşık olarak $ 3.772.487,68
şeklinde hesaplanmış olup sosyal maliyet de hesaba katıldığında yine en az sosyal
kayıp tek gemiyle yapılan seferde $ 4.977.503,13 olarak bulunmuştur. Son
olarak, en iyi senaryoyu üreten gemi için ile gemi ana makinesinin HFO
kullandığı varsayılarak yakıt türünün MDO olarak değiştirilmesinin maliyeti ve
sosyal kazancı hesaplanmıştır. Bu hesaba göre yakıt değişimi dolayısıyla
üretilen emisyon miktarı 7.897,83 t, sosyal maliyet $ 15.480.435,82 düzeyine
inmiştir. Net kazanç $ 2.883.636,66 olarak hesaplanırken sosyal kayıp ise  $ 3.448.947,04 seviyesine kadar gerilemiştir

Kaynakça

  • Andreoni, V., Miola, A.ve Peujo, A. (2008). Cost effectiveness analysis of the emission abatement in the shipping sector emissions. Italy: European Commission Joint Research Centre, Institute for Environment and Sustainability. Bal Beşikçi, E., Arslan, O., Turan, O. ve Ölçer, A.İ. (2016). An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, 66, 393-401. Bektaş, T., Ehmke, J.F., Psaraftis, H.N. ve Puchinger, J. (2019). The role of operational research in green freight transportation. European Journal of Operational Research, 3(1), 807-823. Bentin, M., Zastrau, D., Schlaak, M., Freye, D., Elsner, R. ve Kotzur, S. (2016). A new routing optimization tool-influence of wind and waves on fuel consumption of ships with and without wind assisted ship propulsion systems. Transportation Research Procedia, 14, 153-162. Bilgili, L. (2018). Gemi yaşam döngüsünde operasyonel gaz emisyonlarının makine öğrenmesi yöntemiyle tahmini, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. Bilgili, L. ve Çelebi, U.B. (2018). Developing a new green ship approach for flue gas emission estimation of bulk carriers. Measurement, 120, 121-127. Corbett, J.J. ve Köhler, H.W. (2003). Updated emissions from ocean shipping. Journal of Geophysical Research, 108, D20. Corbett, J.J., Fischbeck, P.S.ve Pandis, S.N. (1999). Global nitrogen and sulfur inventories for oceangoing ships. Journal of Geophysical Research, 104, D3:3457-3470. Deniz, C. ve Durmuşoğlu, Y. (2008). Estimating shipping emissions in the region of the Sea of Marmara. Science of the Total Environment, 390, 255-261. Dragović, B., Tzannatos, E., Tselentis, V., Meštrović, R. ve Škurić, M. (2015). Ship emissions and their externalities in cruise ports. Transportation Research Part D, 61(B), 289-300. Endresen, Ø., Sørgård, E., Behrens, H.L., Brett, P.O. ve Isaksen, I.S.A. (2007). A historical reconstruction of ships’ fuel consumption and emissions. Journal of Geophysical Research, 112, D12301. Eyring, V., Isaksen, I.S.A., Berntsen, T., Collins, W.J., Corbett, J.J., Endresen, O., Grainger, R.G., Moldanova, J., Schlager, H., Stevenson, D.S. (2010). Transport impacts on atmosphere and climate: Shipping, Atmospheric Environment, 44, 4735-4771. Eyring, V., Köhler, H.W., Lauer, A. ve Lemper, B. (2005b). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research, 110, D17306. Eyring, V., Köhler, H.W., van Aardenne, J. ve Lauer, A. (2005a). Emission from international shipping: 1. The last 50 years. Journal of Geophysical Research, 110, D20. Gallagher, K.P. (2005). International trade and air pollution: Estimating the economic costs of air emissions from waterborne commerce vessels in the United States. Journal of Environment Management, 77, 99-103. Grifoll, M., Martorell, L., la Castells, M. ve de Osés, F.X.M. (2018). Ship weather routing using pathfinding algorithms: the case of Barcelona-Palma de Mallorca, Transportation Research Procedia, 33, 299-306. IMO (2000). Study of Greenhouse Gas Emissions from Ships, Final Report to the International Maritime Organization, Norwegian Marine Technology Research Institute-MARINTEK, Trondheim, Norveç. IMO (2009). Second IMO GHG Study, Londra, Birleşik Krallık. IMO (2015). Third IMO Greenhouse Gas Study, Executive Summary and Final Report, Londra, Birleşik Krallık. Jalkanen, J.P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J. ve Stipa, T. (2012). Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmospheric Chemistry and Physics, 12, 2641-2659. Johansson, L., Jalkanen, J.P. ve Kukkonen, J. (2017). Global Assessment of Shipping Emissions in 2015 on a High Spatial and Temporal Resolution. Atmospheric Environment, 167:403-415. Kalli, J. ve Tapaninen, U. (2008). Externalities of Shipping in the Gulf of Finland until 2015, University of Turku, ISBN: 978-951-29-3779-0, ISSN: 1456-1816. Kesgin, U. ve Vardar, N. (2001). A study on exhaust gas emissions from ships in Turkish Straits. Atmospheric Environment, 35, 1863-1870. Kosmas, O.T. ve Vlachos, D.S. (2012). Simulated annealing for optimal ship routing. Computers & Operations Research, 39(3), 576-581. Lee, S.M., Roh, M.I., Kim, K.S., Jung, H. ve Park, J.J. (2018). Method for a simultaneous determination of the path and the speed for ship route planning problems. Ocean Engineering, 157, 301-312. Lonati, G., Cernuschi, S. ve Sidi, S. (2010). Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Science of the Total Environment, 409 (1), 192-200. Maragkogianni, A. ve Papaefthimiou, S. (2015). Evaluating the social cost of cruise ships air emissions in major ports of Greece. Transportation Research Part D, 36, 10-17. McArthur, D.P. ve Osland, L. (2013). Ships in a city harbour: An economic valuation of atmospheric emissions. Transportation Research Part D, 21, 47-52. Moldanová, J., Fridell, E., Petzold, A., Jalkanen, J.P. ve Samaras, Z. (2010). Emission factors for shipping-final data for use in TRANSPHORM emission inventories, transport related air pollution and health impacts-integrated methodologies for assessing particulate matter. Moreno-Gutiérrez, J., Durán-Grados, V., Uriondo, Z. ve Ángel-Llamas, J. (2012). Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain. Atmospheric Measurement Techniques, 5, 5953-5991. Song, S. (2014). Ship emissions inventory, social cost and eco-efficiency in Shangai Yangshan Port. Atmospheric Environment, 82, 288-297. Streets, D.G., Carmichael, G.R. ve Arndt, R.L. (1997). Sulfur dioxide emissions and sulfur deposition from international shipping in Asian Waters. Atmospheric Environment, 31 (10), 1573-1582. Streets, D.G., Guttikunda, S.K. ve Carmichael, G.R. (2000). The growing contribution of sulfur emissions from ships in Asian Waters, 1988-1995. Atmospheric Environment, 34, 4425-4439. Trozzi, C. (2010). Emission estimate methodology for maritime navigation. In Proceedings of 19. International Emission Inventory Conference. 27-30 Eylül, San Antonio, ABD. Tzannatos, E. (2010a). Ship emissions and their externalities for Greece. Atmospheric Environment, 44, 2194-2202. Tzannatos, E. (2010b). Ship emissions and their externalities for the Port of Piraeus-Greece. Atmospheric Environment, 44, 400-407. Vettor, R. ve Soares, C.G. (2016). Development of a ship weather routing system. Ocean Engineering, 123, 1-14. Wahlström, J., Karvesenoja, N. ve Porvari, P. (2006). Ship emissions and technical emission reduction potential in the Northern Baltic Sea, Reports of Finnish Environment Institute, Helsinki, Finlandiya. Walther, L., Rizvanolli, A., Wendebourg, M. Ve Jahn, C. (2016). Modeling and optimization algorithms in ship weather routing. International Journal of e-Navigation and Maritime Economy, 4, 31-45. Wang, K., Yan, X., Yuan, Y., Jiang, X., Lin, X. ve Negenborn, R.R. (2018). Dynamic optimization of ship energy efficiency considering time-varying environmental factors. Transportation Research Part D, 62, 685-698. Wen, M., Pacino, D., Kontovas, C.A. ve Psaraftis, H.N. (2017). A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transportation Research Part D, 52 (A), 303-321. Yan, X., Wang, K., Yuan, Y., Jiang, X. ve Negenborn, R.R. (2018). Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors. Ocean Engineering, 169, 457-468.
  • İnternet Kaynakları
  • Indexmundi (2019). https://www.indexmundi.com/commodities/?commodity=iron-ore, Erişim Tarihi: 22.02.2019
  • Ship and Bunker (2019). https://shipandbunker.com/prices#IFO380 https://shipandbunker.com/prices#MGO, Erişim Tarihi: 22.02.2019

SHIP ENVIRONMENTAL, SOCIAL AND COST ANALYSIS FOR VARIOUS LOAD SCENARIOS

Yıl 2019, , 19 - 36, 13.09.2019
https://doi.org/10.18613/deudfd.614818

Öz

Although ships
constitute up to 90 % of the total trade in the world, they cause a large
amount of emissions due to the fuel and engine systems.
In this study, it
was assumed that a certain amount of cargo was transported separately by five
ships with different carrying capacities between Iskenderun and Shanghai. Then,
emission amounts, social and fuel costs of these emissions, net profit of the
ships and social losses were calculated. As a result of the calculations, it
was found that transporting the cargo by a single large ship is the most
logical scenario in terms of both emission production and cost. The results
also show that a total of 8.418,32 t emission is generated during the
transportation of the cargo by the single vessel and it is estimated that the
total social costs will be generated at around $ 17.008.992,91. The net profit
for the same trip was calculated as $ 3.772.487,68, and when the social cost
was taken into consideration, the minimum loss was found to be $ 4.977.503,13.
Finally, the cost
and social benefits of fuel switching from HFO to MDO were also calculated.
According to this calculation, the amount of the emissions produced decreased
to 7.897,83 t and to $ 15.480.435,82, respectively. The net profit was
calculated as $ 2.883.636,66 and the social loss decreased to $ 3.448.947,04.

Kaynakça

  • Andreoni, V., Miola, A.ve Peujo, A. (2008). Cost effectiveness analysis of the emission abatement in the shipping sector emissions. Italy: European Commission Joint Research Centre, Institute for Environment and Sustainability. Bal Beşikçi, E., Arslan, O., Turan, O. ve Ölçer, A.İ. (2016). An artificial neural network based decision support system for energy efficient ship operations. Computers & Operations Research, 66, 393-401. Bektaş, T., Ehmke, J.F., Psaraftis, H.N. ve Puchinger, J. (2019). The role of operational research in green freight transportation. European Journal of Operational Research, 3(1), 807-823. Bentin, M., Zastrau, D., Schlaak, M., Freye, D., Elsner, R. ve Kotzur, S. (2016). A new routing optimization tool-influence of wind and waves on fuel consumption of ships with and without wind assisted ship propulsion systems. Transportation Research Procedia, 14, 153-162. Bilgili, L. (2018). Gemi yaşam döngüsünde operasyonel gaz emisyonlarının makine öğrenmesi yöntemiyle tahmini, Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. Bilgili, L. ve Çelebi, U.B. (2018). Developing a new green ship approach for flue gas emission estimation of bulk carriers. Measurement, 120, 121-127. Corbett, J.J. ve Köhler, H.W. (2003). Updated emissions from ocean shipping. Journal of Geophysical Research, 108, D20. Corbett, J.J., Fischbeck, P.S.ve Pandis, S.N. (1999). Global nitrogen and sulfur inventories for oceangoing ships. Journal of Geophysical Research, 104, D3:3457-3470. Deniz, C. ve Durmuşoğlu, Y. (2008). Estimating shipping emissions in the region of the Sea of Marmara. Science of the Total Environment, 390, 255-261. Dragović, B., Tzannatos, E., Tselentis, V., Meštrović, R. ve Škurić, M. (2015). Ship emissions and their externalities in cruise ports. Transportation Research Part D, 61(B), 289-300. Endresen, Ø., Sørgård, E., Behrens, H.L., Brett, P.O. ve Isaksen, I.S.A. (2007). A historical reconstruction of ships’ fuel consumption and emissions. Journal of Geophysical Research, 112, D12301. Eyring, V., Isaksen, I.S.A., Berntsen, T., Collins, W.J., Corbett, J.J., Endresen, O., Grainger, R.G., Moldanova, J., Schlager, H., Stevenson, D.S. (2010). Transport impacts on atmosphere and climate: Shipping, Atmospheric Environment, 44, 4735-4771. Eyring, V., Köhler, H.W., Lauer, A. ve Lemper, B. (2005b). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research, 110, D17306. Eyring, V., Köhler, H.W., van Aardenne, J. ve Lauer, A. (2005a). Emission from international shipping: 1. The last 50 years. Journal of Geophysical Research, 110, D20. Gallagher, K.P. (2005). International trade and air pollution: Estimating the economic costs of air emissions from waterborne commerce vessels in the United States. Journal of Environment Management, 77, 99-103. Grifoll, M., Martorell, L., la Castells, M. ve de Osés, F.X.M. (2018). Ship weather routing using pathfinding algorithms: the case of Barcelona-Palma de Mallorca, Transportation Research Procedia, 33, 299-306. IMO (2000). Study of Greenhouse Gas Emissions from Ships, Final Report to the International Maritime Organization, Norwegian Marine Technology Research Institute-MARINTEK, Trondheim, Norveç. IMO (2009). Second IMO GHG Study, Londra, Birleşik Krallık. IMO (2015). Third IMO Greenhouse Gas Study, Executive Summary and Final Report, Londra, Birleşik Krallık. Jalkanen, J.P., Johansson, L., Kukkonen, J., Brink, A., Kalli, J. ve Stipa, T. (2012). Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmospheric Chemistry and Physics, 12, 2641-2659. Johansson, L., Jalkanen, J.P. ve Kukkonen, J. (2017). Global Assessment of Shipping Emissions in 2015 on a High Spatial and Temporal Resolution. Atmospheric Environment, 167:403-415. Kalli, J. ve Tapaninen, U. (2008). Externalities of Shipping in the Gulf of Finland until 2015, University of Turku, ISBN: 978-951-29-3779-0, ISSN: 1456-1816. Kesgin, U. ve Vardar, N. (2001). A study on exhaust gas emissions from ships in Turkish Straits. Atmospheric Environment, 35, 1863-1870. Kosmas, O.T. ve Vlachos, D.S. (2012). Simulated annealing for optimal ship routing. Computers & Operations Research, 39(3), 576-581. Lee, S.M., Roh, M.I., Kim, K.S., Jung, H. ve Park, J.J. (2018). Method for a simultaneous determination of the path and the speed for ship route planning problems. Ocean Engineering, 157, 301-312. Lonati, G., Cernuschi, S. ve Sidi, S. (2010). Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Science of the Total Environment, 409 (1), 192-200. Maragkogianni, A. ve Papaefthimiou, S. (2015). Evaluating the social cost of cruise ships air emissions in major ports of Greece. Transportation Research Part D, 36, 10-17. McArthur, D.P. ve Osland, L. (2013). Ships in a city harbour: An economic valuation of atmospheric emissions. Transportation Research Part D, 21, 47-52. Moldanová, J., Fridell, E., Petzold, A., Jalkanen, J.P. ve Samaras, Z. (2010). Emission factors for shipping-final data for use in TRANSPHORM emission inventories, transport related air pollution and health impacts-integrated methodologies for assessing particulate matter. Moreno-Gutiérrez, J., Durán-Grados, V., Uriondo, Z. ve Ángel-Llamas, J. (2012). Emission-factor uncertainties in maritime transport in the Strait of Gibraltar, Spain. Atmospheric Measurement Techniques, 5, 5953-5991. Song, S. (2014). Ship emissions inventory, social cost and eco-efficiency in Shangai Yangshan Port. Atmospheric Environment, 82, 288-297. Streets, D.G., Carmichael, G.R. ve Arndt, R.L. (1997). Sulfur dioxide emissions and sulfur deposition from international shipping in Asian Waters. Atmospheric Environment, 31 (10), 1573-1582. Streets, D.G., Guttikunda, S.K. ve Carmichael, G.R. (2000). The growing contribution of sulfur emissions from ships in Asian Waters, 1988-1995. Atmospheric Environment, 34, 4425-4439. Trozzi, C. (2010). Emission estimate methodology for maritime navigation. In Proceedings of 19. International Emission Inventory Conference. 27-30 Eylül, San Antonio, ABD. Tzannatos, E. (2010a). Ship emissions and their externalities for Greece. Atmospheric Environment, 44, 2194-2202. Tzannatos, E. (2010b). Ship emissions and their externalities for the Port of Piraeus-Greece. Atmospheric Environment, 44, 400-407. Vettor, R. ve Soares, C.G. (2016). Development of a ship weather routing system. Ocean Engineering, 123, 1-14. Wahlström, J., Karvesenoja, N. ve Porvari, P. (2006). Ship emissions and technical emission reduction potential in the Northern Baltic Sea, Reports of Finnish Environment Institute, Helsinki, Finlandiya. Walther, L., Rizvanolli, A., Wendebourg, M. Ve Jahn, C. (2016). Modeling and optimization algorithms in ship weather routing. International Journal of e-Navigation and Maritime Economy, 4, 31-45. Wang, K., Yan, X., Yuan, Y., Jiang, X., Lin, X. ve Negenborn, R.R. (2018). Dynamic optimization of ship energy efficiency considering time-varying environmental factors. Transportation Research Part D, 62, 685-698. Wen, M., Pacino, D., Kontovas, C.A. ve Psaraftis, H.N. (2017). A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transportation Research Part D, 52 (A), 303-321. Yan, X., Wang, K., Yuan, Y., Jiang, X. ve Negenborn, R.R. (2018). Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors. Ocean Engineering, 169, 457-468.
  • İnternet Kaynakları
  • Indexmundi (2019). https://www.indexmundi.com/commodities/?commodity=iron-ore, Erişim Tarihi: 22.02.2019
  • Ship and Bunker (2019). https://shipandbunker.com/prices#IFO380 https://shipandbunker.com/prices#MGO, Erişim Tarihi: 22.02.2019
Toplam 4 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tam Sayı
Yazarlar

Levent Bilgili

Yayımlanma Tarihi 13 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Bilgili, L. (2019). DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 11(1), 19-36. https://doi.org/10.18613/deudfd.614818
AMA Bilgili L. DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. Eylül 2019;11(1):19-36. doi:10.18613/deudfd.614818
Chicago Bilgili, Levent. “DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 11, sy. 1 (Eylül 2019): 19-36. https://doi.org/10.18613/deudfd.614818.
EndNote Bilgili L (01 Eylül 2019) DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 11 1 19–36.
IEEE L. Bilgili, “DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, c. 11, sy. 1, ss. 19–36, 2019, doi: 10.18613/deudfd.614818.
ISNAD Bilgili, Levent. “DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 11/1 (Eylül 2019), 19-36. https://doi.org/10.18613/deudfd.614818.
JAMA Bilgili L. DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2019;11:19–36.
MLA Bilgili, Levent. “DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, c. 11, sy. 1, 2019, ss. 19-36, doi:10.18613/deudfd.614818.
Vancouver Bilgili L. DEĞİŞİK YÜK SENARYOLARINDA GEMİ ÇEVRESEL, SOSYAL VE MALİYET ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2019;11(1):19-36.

Dergimizde yayınlanmış makaleler kaynak gösterilmeden kullanılamaz

Dergideki yazıların bilimsel sorumluluğu yazarlarına aittir.

Denizcilik Fakültesi Dergisinin içeriği tüm kullanıcılara ücretsiz olarak sunulmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/deudfd/contacts


download    download   download

                                               18441     23882   23881      13875                                                                     27606  13880 13876  27184   download