Araştırma Makalesi
BibTex RIS Kaynak Göster

KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ

Yıl 2020, Cilt: 12, 15 - 32, 05.10.2020
https://doi.org/10.18613/deudfd.803379

Öz

Gemi büyüklüğü ve çeşitliliğinin artışı, liman vinçlerinin teknolojik ve yapısal olarak değişimine neden olmaktadır. Bu değişim, ekipman seçiminin liman kapasite planlamaları, verimlilik hedefleri, mevcut gereklilikler ve amaçlar doğrultusunda yapılmasını gerektirmektedir. Bu yüzden çalışmanın ana amacı, gemilerden sahile konteyner elleçleyen liman ekipmanları arasındaki operasyonel verimliliği uygulamalı olarak karşılaştırmak ve doğru ekipmanı seçmektir. Araştırmada “Small-N” karşılaştırmalı analiz metodu, ekipmanların üstün ve zayıf yönlerinin tespit edilebilmesi amacıyla tercih edilmiştir. Çalışma için geliştirilen özgün bir simülasyon yazılımı aracılığı ile 2 adet MHC (Mobile Harbour Crane) ve 1 adet SSG (Ship to Shore Gantry Crane) ekipmanlarına ait veriler kullanılmıştır. Araştırmanın sonuçları göstermektedir ki liman ekipman seçimi, ekipmanlarının saatlik hareketlerine göre değişmektedir. Gemi sahipleri limanın verdiği hizmete odaklandığından ötürü liman-hat anlaşmaları minimum hareket sayı sınırına kadar yapılmaktadır. Bu noktada MHC’lerin yanal hareketleri yüzünden vinç ve hareket sayısı kısıtlanmakta ve sonuç olarak STS’ler konteyner operasyonlarında önemli bir rekabetçi avantaj sağlamaktadır.

Kaynakça

  • Bartošek, A ve Marek, O. (2013), Quay Cranes in Container Terminals, Transaction on Transport Sciences, 6(1), 9-18.
  • Beškovnik, B. (2008). Measuring and increasing the productivity model on maritime container terminals. Pomorstvo, 22(2), 171-183. Bugaric, U. S., Petrovic, D. B., Jeli, Z. V ve Petrovic, D. V. (2012). Optimal Utilization of the Terminal for Bulk Cargo Unloading. Simulation, 88(12), 1508–1521.
  • Choi, Y.-S. (2004). Simulation Study for Performance Measures of Resources in a Port Container Terminal. International Journal of Navigation and Port Research, 28(7), 587–591.
  • Dahal, K., Galloway, S., & Hopkins, I. (2007). Modelling, simulation and optimisation of port system management. International Journal of Agile Systems and Management, 2(1), 92-108.
  • Dayananda, S. K. ve Dwarakish, G. S. (2018). Measuring port performance and productivity. ISH Journal of Hydraulic Engineering, 26(2), 221-227.
  • Demirci, E. (2003). Simulation Modelling Analysis of a Port Investment, Simulation, 79(2), 94-105.
  • Elentably, A. (2016). Simulation of a Container Terminal and It’s Reflect on Port Economy, The International Journal on Marine Navigation and Safety of Sea Transportation. 10(2), 331-337.
  • Esmer, S. (2008). Performance Measurements of Container Terminal Operations. Dokuz Eylul University Journal of Graduate School of Social Sciences, 10(1), 238–255.
  • Esser, F., & Vliegenthart, R. (2017). Comparative research methods. The international encyclopedia of communication research methods, 1-22.
  • García-Fernández, I., Pla-Castells, M., Gamón, M. A. ve Martínez-Durá, R. J. (2011). New developments in simulation-based harbour crane training. International Journal of Simulation and Process Modelling, 6(4), 274–287.
  • Houjun, L., Daofang, C., Weijian, M. ve JingShuai, L. (2011). Design and Construction of Container Terminal Machine Cooperation Virtual Environment, Applied Mechanics and Materials, 80-81: 1193-1197.
  • Kim, W.-S. ve Kim, J. (2019). Simulation Models for Offshore Port Service Concepts, Applied Science, 9, 1-12.
  • Landman, T. (2008). Issues and methods in comparative politics (3rd ed.). London: Routledge.
  • Mill, J. S. (1856). A System of Logic, Ratiocinative and Inductive: 1 (Vol. 1). Parker.
  • Na A, M., Koo, M.J. ve Lee, K.S. (2014). A Development of Next-Generation Port Simulator for the Performance Evaluation of Port Crane, Applied Mechanics and Materials, 548-549, 1498-1503.
  • Pourahmadi, M., Sayehbani, M. ve Emad, G.R. (2015). Utilization of Fully Automated Container Terminals for Improving Efficiency of Port Logistics and Supply Chain (Port Complex of Shahid Rajai). Indian Journal of Fundemental and Applied Life Science, 5(S2), 2644-2655.
  • Schott, D. L. ve Lodewijks, G. (2007). Analysis of Dry Bulk Terminals: Chances for Exploration. Particle and Particle Systems Characterization, 24(4–5), 375–380.
  • Sun, F., Wang, X., Jin, L., & Shi, Y. (2017). Improvement of Rail-sea Multimodal Transport with Dry Port Construction: Case Study of Ningbo-Zhoushan Port. Sci. J. Bus. Manag, 5, 78.
  • Teune, H., & Przeworski, A. (1970). The logic of comparative social inquiry (pp. 32-4). New York: Wiley-Interscience.
  • UNCTAD. (1985). Port Development: A Handbook for Planners in Developing Countries (Second Ed.). New York: United Nations Publications.
  • Zhu, M., Fan, X., Cheng, H. ve He, Q. (2010) Modeling and simulation of automated container terminal operation. Journal of Computers, 5 (6): 951–957.

PORT EQUIPMENT SELECTION BETWEEN CONTAINER TERMINAL EQUIPMENT ACCORDING TO OPERATIONAL EFFICIENCY: A COMPARATIVE SIMULATION ANALYSIS

Yıl 2020, Cilt: 12, 15 - 32, 05.10.2020
https://doi.org/10.18613/deudfd.803379

Öz

The rise in the ship size and diversity causes the technological and structural change of harbor cranes. This change requires equipment selection to be made in line with port capacity plans, efficiency targets, current requirements and objectives. Therefore, the main aim of the study is to compare the operational efficiency of port container handling equipment from ships to shore in practice and, finally, to select the right equipment. In this study, the “Small-N” comparative analysis method was preferred in order to determine the strengths and weaknesses of the equipments. The data belonging to 2 MHC (Mobile Harbor Crane) and 1 SSG (Ship to Shore Gantry Crane) equipments were used by means of a unique simulation software developed for this study. The study findings show that the selection of port equipment varies according to the hourly movements of the equipment. As a consequence of the ship owners that only focus on the service provided by the port, port-line agreements are made up to the minimum number of movements. At this point, the number of cranes and movements is limited due to the lateral movements of MHCs and as a result, STSs provide a significant competitive advantage in container operations.

Kaynakça

  • Bartošek, A ve Marek, O. (2013), Quay Cranes in Container Terminals, Transaction on Transport Sciences, 6(1), 9-18.
  • Beškovnik, B. (2008). Measuring and increasing the productivity model on maritime container terminals. Pomorstvo, 22(2), 171-183. Bugaric, U. S., Petrovic, D. B., Jeli, Z. V ve Petrovic, D. V. (2012). Optimal Utilization of the Terminal for Bulk Cargo Unloading. Simulation, 88(12), 1508–1521.
  • Choi, Y.-S. (2004). Simulation Study for Performance Measures of Resources in a Port Container Terminal. International Journal of Navigation and Port Research, 28(7), 587–591.
  • Dahal, K., Galloway, S., & Hopkins, I. (2007). Modelling, simulation and optimisation of port system management. International Journal of Agile Systems and Management, 2(1), 92-108.
  • Dayananda, S. K. ve Dwarakish, G. S. (2018). Measuring port performance and productivity. ISH Journal of Hydraulic Engineering, 26(2), 221-227.
  • Demirci, E. (2003). Simulation Modelling Analysis of a Port Investment, Simulation, 79(2), 94-105.
  • Elentably, A. (2016). Simulation of a Container Terminal and It’s Reflect on Port Economy, The International Journal on Marine Navigation and Safety of Sea Transportation. 10(2), 331-337.
  • Esmer, S. (2008). Performance Measurements of Container Terminal Operations. Dokuz Eylul University Journal of Graduate School of Social Sciences, 10(1), 238–255.
  • Esser, F., & Vliegenthart, R. (2017). Comparative research methods. The international encyclopedia of communication research methods, 1-22.
  • García-Fernández, I., Pla-Castells, M., Gamón, M. A. ve Martínez-Durá, R. J. (2011). New developments in simulation-based harbour crane training. International Journal of Simulation and Process Modelling, 6(4), 274–287.
  • Houjun, L., Daofang, C., Weijian, M. ve JingShuai, L. (2011). Design and Construction of Container Terminal Machine Cooperation Virtual Environment, Applied Mechanics and Materials, 80-81: 1193-1197.
  • Kim, W.-S. ve Kim, J. (2019). Simulation Models for Offshore Port Service Concepts, Applied Science, 9, 1-12.
  • Landman, T. (2008). Issues and methods in comparative politics (3rd ed.). London: Routledge.
  • Mill, J. S. (1856). A System of Logic, Ratiocinative and Inductive: 1 (Vol. 1). Parker.
  • Na A, M., Koo, M.J. ve Lee, K.S. (2014). A Development of Next-Generation Port Simulator for the Performance Evaluation of Port Crane, Applied Mechanics and Materials, 548-549, 1498-1503.
  • Pourahmadi, M., Sayehbani, M. ve Emad, G.R. (2015). Utilization of Fully Automated Container Terminals for Improving Efficiency of Port Logistics and Supply Chain (Port Complex of Shahid Rajai). Indian Journal of Fundemental and Applied Life Science, 5(S2), 2644-2655.
  • Schott, D. L. ve Lodewijks, G. (2007). Analysis of Dry Bulk Terminals: Chances for Exploration. Particle and Particle Systems Characterization, 24(4–5), 375–380.
  • Sun, F., Wang, X., Jin, L., & Shi, Y. (2017). Improvement of Rail-sea Multimodal Transport with Dry Port Construction: Case Study of Ningbo-Zhoushan Port. Sci. J. Bus. Manag, 5, 78.
  • Teune, H., & Przeworski, A. (1970). The logic of comparative social inquiry (pp. 32-4). New York: Wiley-Interscience.
  • UNCTAD. (1985). Port Development: A Handbook for Planners in Developing Countries (Second Ed.). New York: United Nations Publications.
  • Zhu, M., Fan, X., Cheng, H. ve He, Q. (2010) Modeling and simulation of automated container terminal operation. Journal of Computers, 5 (6): 951–957.

Ayrıntılar

Birincil Dil Türkçe
Konular Deniz Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Sedat BAŞTUĞ Bu kişi benim 0000-0002-7121-2882

Seçil GÜLMEZ Bu kişi benim 0000-0002-4342-4386

Alpaslan ATEŞ Bu kişi benim 0000-0002-0933-2664

Vahit ÇALIŞIR Bu kişi benim 0000-0001-6575-8988

Yayımlanma Tarihi 5 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 12

Kaynak Göster

APA BAŞTUĞ, S., GÜLMEZ, S., ATEŞ, A., ÇALIŞIR, V. (2020). KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12, 15-32. https://doi.org/10.18613/deudfd.803379
AMA BAŞTUĞ S, GÜLMEZ S, ATEŞ A, ÇALIŞIR V. KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. Ekim 2020;12:15-32. doi:10.18613/deudfd.803379
Chicago BAŞTUĞ, Sedat, Seçil GÜLMEZ, Alpaslan ATEŞ, ve Vahit ÇALIŞIR. “KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12, Ekim (Ekim 2020): 15-32. https://doi.org/10.18613/deudfd.803379.
EndNote BAŞTUĞ S, GÜLMEZ S, ATEŞ A, ÇALIŞIR V (01 Ekim 2020) KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12 15–32.
IEEE S. BAŞTUĞ, S. GÜLMEZ, A. ATEŞ, ve V. ÇALIŞIR, “KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ”, Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, c. 12, ss. 15–32, 2020, doi: 10.18613/deudfd.803379.
ISNAD BAŞTUĞ, Sedat vd. “KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12 (Ekim 2020), 15-32. https://doi.org/10.18613/deudfd.803379.
JAMA BAŞTUĞ S, GÜLMEZ S, ATEŞ A, ÇALIŞIR V. KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020;12:15–32.
MLA BAŞTUĞ, Sedat vd. “KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ”. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, c. 12, 2020, ss. 15-32, doi:10.18613/deudfd.803379.
Vancouver BAŞTUĞ S, GÜLMEZ S, ATEŞ A, ÇALIŞIR V. KONTEYNER TERMİNAL EKİPMANLARI ARASINDA OPERASYONEL VERİMLİLİĞE GÖRE LİMAN EKİPMAN SEÇİMİ: KARŞILAŞTIRMALI BİR SİMULASYON ANALİZİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020;12:15-32.

Dergimizde yayınlanmış makaleler kaynak gösterilmeden kullanılamaz

Dergideki yazıların bilimsel sorumluluğu yazarlarına aittir.

Denizcilik Fakültesi Dergisinin içeriği tüm kullanıcılara ücretsiz olarak sunulmaktadır.

Dokuz Eylül Üniversitesi Yayınevi Web Sitesi
https://kutuphane.deu.edu.tr/yayinevi/

Dergi İletişim Bilgileri Sayfası
https://dergipark.org.tr/tr/pub/deudfd/contacts


download    download   download

                                               18441     23882   23881      13875                                                                                                     27606    13880  13876   27184    download