BibTex RIS Kaynak Göster

YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ

Yıl 2012, Cilt: 27 Sayı: 1, 85 - 95, 25.06.2012

Öz

Enflasyon öngörülerinin elde edilmesi önemli bir ekonomik problemdir. Öngörülerin daha doğru elde edilmesi daha doğru kararlara neden olacaktır. T.C. Merkez bankası her yılın belirli dönemlerinde enflasyon raporları yayınlamaktadır. Raporlarda enflasyon beklentisi anketi sonuçları yer almaktadır. Bu çalışmada tüketici fiyat endeksi yüksek dereceli bulanık zaman serisi yaklaşımı ile öngörülmüştür. Yüksek dereceli bulanık zaman serisi modelinde ilişkilerin belirlenmesi yapay sinir ağları ile yapılmaktadır. Tüketici fiyat endeksi zaman serisi, ayrıca literatürde yer alan bazı bulanık zaman serisi yaklaşımları ile tahmin edilerek, öngörü doğruluğu açısından T.C. Merkez Bankası enflasyon beklentisi anketi sonuçları ile karşılaştırılmıştır.

Kaynakça

  • Aladag C. H., Basaran M.A., Egrioglu E., Yolcu U., & Uslu V.R. (2009), “Forecasting in High Order Fuzzy Times Series by Using Neural Networks to Define Fuzzy Relations”, Expert Systems with Applications, 36, 4228-4231.
  • Chen, S. M. & Hwang, J. R. (2000), “Temperature prediction using fuzzy time series”, IEEE ransaction on Systems, Man and Cybernetics, Part B, 30 (2), 263-275.
  • Chen, S. M. (1996), “Forecasting enrollments based on fuzzy time-series”, Fuzzy Sets and Systems, 81, 311-319.
  • Chen, S. M. (2002), “Forecasting enrollments based on high-order fuzzy time series”, Cybernetics and Systems An International Journal, 33, 1-16.
  • Huarng, K. & Yu, H.K. (2006), “The application of neural networks to forecast fuzzy time series”, Physica A, 363, 481-491.
  • Huarng, K. (2001), “Heuristic models of fuzzy time series for forecasting” Fuzzy Sets and Systems, 123 (3), 369-386.
  • Hwang, J. R., Chen, S. M., & Lee, C. H. (1998), “Handling forecasting problems using fuzzy time series”, Fuzzy Sets and Systems, 100, 217-228.
  • Song, Q. & Chissom, B.S., (1994), “Forecasting enrollments with fuzzy time series- Part II”, Fuzzy Sets and Systems, 62, 1-8.
  • Song, Q. and Chissom, B.S. (1993a), “Fuzzy time series and its models”, Fuzzy Sets and Systems, 54, 269-277.
  • Song, Q. and Chissom, B.S. (1993b), “Forecasting enrollments with fuzzy time series- Part I”, Fuzzy Sets and Systems, 54, 1-10.
  • Sullivan, J., & Woodall, W. H. (1994), “A comparison of fuzzy forecasting and Markov modeling”, Fuzzy Sets and Systems, 64, 279-293.
  • Yu, H. K. (2005a), “A refined fuzzy time series model for forecasting”, Physica A, 346, 657-681.
  • Yu, H. K. (2005b), “Weighted fuzzy time series models for TAIEX forecasting”, Physica A, 349, 609-624.
  • Zadeh L.A. (1965), “Fuzzy Sets”, Inform and Control, 8, 338-353.

FORECASTING INFLATION RATES WITH HIGH ORDER FUZZY TIME SERIES APPROACH

Yıl 2012, Cilt: 27 Sayı: 1, 85 - 95, 25.06.2012

Öz

To obtain inflation forecasts is an important economic issue. The more accurate forecasts we get implies the more precise decisions we make. The central Bank reports inflation rates in certain periods of every year. In this reports the results of inflation expectation survey are presented. In this study we use an approach in which relationship is determined by artificial neural network in high order fuzzy time series model. Time series of consumer price index is estimated by both the artificial neural network based method and some fuzzy approaches which is common in the literature. The results are compared to the results of inflation expectation survey analysis conducted by Central Bank of the Republic of Turkey in the aspect of forecasts accuracy.

Kaynakça

  • Aladag C. H., Basaran M.A., Egrioglu E., Yolcu U., & Uslu V.R. (2009), “Forecasting in High Order Fuzzy Times Series by Using Neural Networks to Define Fuzzy Relations”, Expert Systems with Applications, 36, 4228-4231.
  • Chen, S. M. & Hwang, J. R. (2000), “Temperature prediction using fuzzy time series”, IEEE ransaction on Systems, Man and Cybernetics, Part B, 30 (2), 263-275.
  • Chen, S. M. (1996), “Forecasting enrollments based on fuzzy time-series”, Fuzzy Sets and Systems, 81, 311-319.
  • Chen, S. M. (2002), “Forecasting enrollments based on high-order fuzzy time series”, Cybernetics and Systems An International Journal, 33, 1-16.
  • Huarng, K. & Yu, H.K. (2006), “The application of neural networks to forecast fuzzy time series”, Physica A, 363, 481-491.
  • Huarng, K. (2001), “Heuristic models of fuzzy time series for forecasting” Fuzzy Sets and Systems, 123 (3), 369-386.
  • Hwang, J. R., Chen, S. M., & Lee, C. H. (1998), “Handling forecasting problems using fuzzy time series”, Fuzzy Sets and Systems, 100, 217-228.
  • Song, Q. & Chissom, B.S., (1994), “Forecasting enrollments with fuzzy time series- Part II”, Fuzzy Sets and Systems, 62, 1-8.
  • Song, Q. and Chissom, B.S. (1993a), “Fuzzy time series and its models”, Fuzzy Sets and Systems, 54, 269-277.
  • Song, Q. and Chissom, B.S. (1993b), “Forecasting enrollments with fuzzy time series- Part I”, Fuzzy Sets and Systems, 54, 1-10.
  • Sullivan, J., & Woodall, W. H. (1994), “A comparison of fuzzy forecasting and Markov modeling”, Fuzzy Sets and Systems, 64, 279-293.
  • Yu, H. K. (2005a), “A refined fuzzy time series model for forecasting”, Physica A, 346, 657-681.
  • Yu, H. K. (2005b), “Weighted fuzzy time series models for TAIEX forecasting”, Physica A, 349, 609-624.
  • Zadeh L.A. (1965), “Fuzzy Sets”, Inform and Control, 8, 338-353.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA38BR23GN
Bölüm Makaleler
Yazarlar

VEDİDE REZAN Uslu Bu kişi benim

UFUK Yolcu Bu kişi benim

EROL Eğrioğlu Bu kişi benim

Ç.HAKAN Aladağ Bu kişi benim

M. ALPER Başaran Bu kişi benim

Yayımlanma Tarihi 25 Haziran 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 27 Sayı: 1

Kaynak Göster

APA Uslu, V. R., Yolcu, U., Eğrioğlu, E., Aladağ, Ç., vd. (2012). YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, 27(1), 85-95.
AMA Uslu VR, Yolcu U, Eğrioğlu E, Aladağ Ç, Başaran MA. YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. Haziran 2012;27(1):85-95.
Chicago Uslu, VEDİDE REZAN, UFUK Yolcu, EROL Eğrioğlu, Ç.HAKAN Aladağ, ve M. ALPER Başaran. “YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 27, sy. 1 (Haziran 2012): 85-95.
EndNote Uslu VR, Yolcu U, Eğrioğlu E, Aladağ Ç, Başaran MA (01 Haziran 2012) YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 27 1 85–95.
IEEE V. R. Uslu, U. Yolcu, E. Eğrioğlu, Ç. Aladağ, ve M. A. Başaran, “YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ”, Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, c. 27, sy. 1, ss. 85–95, 2012.
ISNAD Uslu, VEDİDE REZAN vd. “YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi 27/1 (Haziran 2012), 85-95.
JAMA Uslu VR, Yolcu U, Eğrioğlu E, Aladağ Ç, Başaran MA. YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2012;27:85–95.
MLA Uslu, VEDİDE REZAN vd. “YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ”. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi, c. 27, sy. 1, 2012, ss. 85-95.
Vancouver Uslu VR, Yolcu U, Eğrioğlu E, Aladağ Ç, Başaran MA. YÜKSEK DERECELİ BULANIK ZAMAN SERİSİ YAKLAŞIMI İLE TÜRKİYE ENFLASYON ÖNGÖRÜSÜ. Dokuz Eylül Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisi. 2012;27(1):85-9.