Araştırma Makalesi
BibTex RIS Kaynak Göster

Gelişmiş Veri Madenciliği Teknikleri Yoluyla Müşteri Segmentasyonuna Derin Bir Bakış

Yıl 2025, Cilt: 27 Sayı: 80, 272 - 283, 23.05.2025
https://doi.org/10.21205/deufmd.2025278014

Öz

Bu araştırma, bir market firmasının müşteri veritabanındaki müşteri profillerini veri madenciliği tekniklerini kullanarak detaylı bir şekilde ortaya çıkarmak için gerçekleştirdiği müşteri segmentasyon sürecini incelemektedir. Müşteri segmentasyonu, pazarlama stratejilerinin etkin bir şekilde uyarlanmasında kritik öneme sahiptir. Bu süreç, kişiselleştirilmiş müşteri profillerinin oluşturulmasına olanak tanıyarak daha verimli ve hedefe yönelik pazarlama çalışmalarına olanak sağlamaktadır. Çalışmada kullanılan veri seti, tanınmış bir market firmasının veri tabanından elde edilmiştir ve 29 farklı özelliğe sahip 2.240 veri noktası içermektedir. Bu özellikler müşteri demografisi, ürün bilgileri, satın alma kanalları ve promosyon yanıt verileri olmak üzere dört kategoride toplanmıştır. Çalışma, K-Means Kümeleme ve Aglomeratif Kümeleme gibi ileri kümeleme tekniklerini kullanarak müşteriler arasındaki anlamlı kalıpları ve gruplamaları keşfetmeyi amaçlamaktadır. Ayrıca, araştırmanın bir diğer amacı, dinamik pazar karmaşıklıklarına uyum sağlamanın ve tüketici davranışlarını değiştirmenin kritik bir yönü olan müşteri segmentasyonu için veri madenciliği ve makine öğrenmesi yöntemlerinin nasıl etkili bir şekilde kullanılabileceğini ortaya koymaktır. Araştırma kapsamında dört müşteri kümesi ortaya çıkmıştır. Bu kümeler, demografik bilgiler, satın alma davranışı ve promosyon faaliyetlerine verilen yanıtlar gibi çeşitli özelliklere dayalı olarak müşteriler arasındaki anlamlı gruplaşmaları ve kalıpları temsil etmektedir. Bulgular, müşteri profillerinin karmaşıklığını anlamak ve pazarlama stratejilerini buna göre ayarlamak için değerli bir çerçeve sunmaktadır.

Kaynakça

  • [1] Hung, P. D., Lien, N. T. T., Ngoc, N. D. 2019. Customer Segmentation Using Hierarchical Agglomerative Clustering, 2nd International Conference on Information Science and Systems, 16 – 19 March-2019, Tokyo, Japan, pp.33-37.
  • [2] Huang, S. 2014. Method for Customer Segmentation Based on Three-Way Decisions Theory-Journal of Computer Applications, Vol. 34, No. 1, p.244.
  • [3] Tabianan, K., Velu, S., Ravi, V. 2022. K-means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data-Sustainability, Vol. 14, No. 12, p.7243.
  • [4] Goyat, S. 2011. The Basis of Market Segmentation: A Critical Review of Literature-European Journal of Business and Management, Vol. 3, No. 9, p.45-54.
  • [5] Thakur, R., Workman, L. 2016. Customer Portfolio Management (CPM) for Improved Customer Relationship Management (CRM): Are Your Customers Platinum, Gold, Silver, or Bronze?-Journal of Business Research, Vol. 69, No. 10, pp.4095-4102.
  • [6] Khandpur, N., Zatz, L. Y., Bleich, S. N., Taillie, L. S., Orr, J. A., Rimm, E. B., Moran, A. J. 2020. Supermarkets in Cyberspace: A Conceptual Framework to Capture the Influence of Online Food Retail Environments on Consumer Behavior-International Journal of Environmental Research and Public Health, Vol. 17, No. 22, p.8639.
  • [7] Diba, K., Batoulis, K., Weidlich, M., Weske, M. 2020. Extraction, Correlation, and Abstraction of Event Data for Process Mining-Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 10, No. 3, p.e1346.
  • [8] Arora, P., Varshney, S. 2016. Analysis of K-means and K-medoids Algorithm for Big Data-Procedia Computer Science, Vol. 78, p.507-512.
  • [9] Cosenz, F., Bivona, E. 2021. Fostering Growth Patterns of SMEs Through Business Model Innovation. A Tailored Dynamic Business Modelling Approach-Journal of Business Research, Vol. 130, pp. 658-669.
  • [10] Lefait, G., Kechadi, T. 2010. Customer Segmentation Architecture Based on Clustering Techniques. 2010 Fourth International Conference on Digital Society, 10-16 February-2010, St. Maarten, Netherlands Antilles, 243-248.
  • [11] Steenkamp, J. B. E., Ter Hofstede, F. 2002. International Market Segmentation: Issues and Perspectives-International Journal of Research in Marketing, Vol. 19, No. 3, pp.185-213.
  • [12] Smith, W. R. 1956. Product Differentiation and Market Segmentation as Alternative Marketing Strategies-Journal of Marketing, Vol. 21, No. 1, pp.3-8.
  • [13] Tynan, A. C., Drayton, J. 1987. Market Segmentation-Journal of Marketing Management, Vol. 2, No. 3, pp.301-335.
  • [14] Zhang, J. Z., Chang, C. W. 2021. Consumer Dynamics: Theories, Methods, and Emerging Directions-Journal of the Academy of Marketing Science, Vol. 49, p.166-196.
  • [15] Shahid, S., Paul, J. 2021. Intrinsic Motivation of Luxury Consumers in An Emerging Market-Journal of Retailing and Consumer Services, Vol. 61, p.102531.
  • [16] Beauvisage, T., Beuscart, J. S., Coavoux, S., Mellet, K. 2023. How Online Advertising Targets Consumers: The Uses of Categories and Algorithmic Tools by Audience Planners-New Media & Society, Vol. 46, p.14614448221146174.
  • [17] Surendro, K. 2019. Predictive Analytics for Predicting Customer Behavior, 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 13-15 March-2019, Yogyakarta, Indonesia, pp.230-233.
  • [18] Kotras, B. 2020. Mass Personalization: Predictive Marketing Algorithms and the Reshaping of Consumer Knowledge-Big Data & Society, Vol. 7, No. 2, p.2053951720951581.
  • [19] Soni, V. 2021. Deep Learning and Computer Vision-Based Retail Analytics for Customer Interaction and Response Monitoring-Eigenpub Review of Science and Technology, Vol. 5, No. 1, pp.1-15.
  • [20] Verma, R. K., Kumari, N. 2023. Generative AI as a Tool for Enhancing Customer Relationship Management Automation and Personalization Techniques-International Journal of Responsible Artificial Intelligence, Vol. 13, No. 9, pp.1-8.
  • [21] Bharadiya, J. P. 2022. Driving Business Growth with Artificial Intelligence and Business Intelligence-International Journal of Computer Science and Technology, Vol. 6, No. 4, pp.28-44.
  • [22] Capuano, N., Greco, L., Ritrovato, P., Vento, M. 2021. Sentiment Analysis for Customer Relationship Management: An Incremental Learning Approach-Applied Intelligence, Vol. 51, pp.3339-3352.
  • [23] Verma, S. 2022. Sentiment Analysis of Public Services for Smart Society: Literature Review and Future Research Directions-Government Information Quarterly, Vol. 39, No. 3, pp.101708.
  • [24] Yang, J., Xiu, P., Sun, L., Ying, L., Muthu, B. 2022. Social Media Data Analytics for Business Decision Making System to Competitive Analysis. Information Processing & Management, Vol. 59, No. 1, p.102751.
  • [25] Zhang, C., Wang, X., Cui, A. P., Han, S. 2020. Linking Big Data Analytical Intelligence to Customer Relationship Management Performance. Industrial Marketing Management, Vol. 91, pp.483-494.
  • [26] Amarasinghe, H. 2023. Transformative Power of AI in Customer Relationship Management (CRM): Potential Benefits, Pitfalls, and Best Practices for Modern Enterprises. International Journal of Social Analytics, Vol. 8, No. 8, pp.1-10.
  • [27] Dasu, T., Johnson, T. 2003. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, Hoboken.
  • [28] Carnein, M., Trautmann, H. 2019. Customer Segmentation Based on Transactional Data Using Stream Clustering. Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference, 14-17 April-2019, Macau, China, pp.280-292.
  • [29] Punhani, R., Arora, V. P. S., Sabitha, A. S., Shukla, V. K. 2021. Segmenting E-Commerce Customer Through Data Mining Techniques-Journal of Physics: Conference Series, Vol. 1714, No. 1, p.012026.
  • [30] Hermanto, H., Sulistyan, R. B., Touati, H. 2022. Service Satisfaction Based on Performance Index and Importance Performance Analysis (IPA)-Innovation Business Management and Accounting Journal, Vol. 1, No. 2, pp.41-52.
  • [31] Müller, N. M., Markert, K. 2019. Identifying Mislabeled Instances in Classification Datasets. 2019 International Joint Conference on Neural Networks (IJCNN), 14-19 July-2019, Budapest, Hungary, pp.1-8.
  • [32] Mach-Król, M., Hadasik, B. 2021. On a Certain Research Gap in Big Data Mining for Customer Insights-Applied Sciences, Vol. 11, No. 15, p.6993.
  • [33] Hossain, M., Sattar, A. S., Paul, M. K. 2019. Market Basket Analysis Using Apriori and FP Growth Algorithm. 2019 22nd international conference on computer and information technology (ICCIT), 18-20 December-2019, Dhaka, Bangladesh, pp.1-6.
  • [34] Laxmi, K. R., Srivastava, S., Madhuravani, K., Pallavi, S., Dewangan, O. 2022. Modified Cross‐Sell Model for Telecom Service Providers Using Data Mining Techniques-Data Mining and Machine Learning Applications, pp.195-207.
  • [35] Kumar, S., Kar, A. K., Ilavarasan, P. V. 2021. Applications of Text Mining in Services Management: A Systematic Literature Review-International Journal of Information Management Data Insights, Vol. 1, No. 1, p.100008.
  • [36] Koehn, D., Lessmann, S., Schaal, M. 2020. Predicting Online Shopping Behaviour from Clickstream Data Using Deep Learning-Expert Systems with Applications, Vol. 150, p.113342.
  • [37] Olmezogullari, E., Aktas, M. S. 2022. Pattern2vec: Representation of Clickstream Data Sequences for Learning User Navigational Behavior-Concurrency and Computation: Practice and Experience, Vol. 34, No. 9, p.e6546.
  • [38] Anitha, P., Patil, M. M. 2022. RFM Model for Customer Purchase Behavior Using K-Means Algorithm-Journal of King Saud University-Computer and Information Sciences, Vol. 34, No. 5, pp.1785-1792.
  • [39] Safa, N. S., Ghani, N. A., Ismail, M. A. 2014. An Artificial Neural Network Classification Approach for Improving Accuracy of Customer Identification in E-Commerce-Malaysian Journal of Computer Science, Vol. 27, No. 3, pp.171-185.
  • [40] Ahmad, A. K., Jafar, A., Aljoumaa, K. 2019. Customer Churn Prediction in Telecom Using Machine Learning in Big Data Platform-Journal of Big Data, Vol. 6, No. 1, pp.1-24.
  • [41] Dash, A., Chakraborty, A., Ghosh, S., Mukherjee, A., Gummadi, K. P. 2021. When The Umpire is Also a Player: Bias in Private Label Product Recommendations on E-Commerce Marketplaces. 2021 ACM Conference on Fairness, Accountability, and Transparency, 3-10 March-2021, Online, pp.873-884.
  • [42] Ernawati, E., Baharin, S. S. K., Kasmin, F. 2021. A Review of Data Mining Methods in RFM-Based Customer Segmentation-Journal of Physics: Conference Series, Vol. 1869, No. 1, p.012085.
  • [43] Kamath, C. 2001. On Mining Scientific Datasets-Data Mining for Scientific and Engineering Applications, p.1-21.
  • [44] Raj, P., Kumar, S. A. 2017. Big Data Analytics Processes and Platforms Facilitating Smart Cities-Smart cities: Foundations, Principles, and Applications, pp.23-52.
  • [45] Grira, N., Crucianu, M., Boujemaa, N. 2004. Unsupervised and Semi-Supervised Clustering: A Brief Survey-A Review of Machine Learning Techniques for Processing Multimedia Content, Vol. 1, No. 2004, p.9-16.
  • [46] Gasch, A. P., Eisen, M. B. 2002. Exploring the Conditional Coregulation of Yeast Gene Expression Through Fuzzy K-Means Clustering-Genome Biology, Vol. 3, No. 11, pp.1-22.
  • [47] Mutihac, L., Mutihac, R. 2008. Mining in Chemometrics-Analytica Chimica Acta, Vol. 612, No. 1, pp.1-18.
  • [48] Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., Song, A. 2015. Efficient Agglomerative Hierarchical Clustering-Expert Systems with Applications, Vol. 42, No. 5, p.2785-2797.
  • [49] Yuan, C., Yang, H. 2019. Research on K-Value Selection Method of K-Means Clustering Algorithm-J — Multidisciplinary Scientific Journal, Vol. 2, No. 2, pp.226-235.
  • [50] Alkhayrat, M., Aljnidi, M., Aljoumaa, K. 2020. A Comparative Dimensionality Reduction Study in Telecom Customer Segmentation Using Deep Learning And PCA-Journal of Big Data, Vol. 7, pp.1-23.
  • [51] Zheng, A., Casari, A. 2018. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O'Reilly Media, Inc, California, USA.
  • [52] Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G., Baker, T. 2020. Analysis of Dimensionality Reduction Techniques on Big Data-IEEE Access, Vol. 8, pp.54776-54788.
  • [53] Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., Liu, J. 2021. A Quantitative Discriminant Method of Elbow Point for the Optimal Number of Clusters in Clustering Algorithm-Eurasip Journal on Wireless Communications and Networking, Vol. 2021, No. 1, pp.1-16.
  • [54] Kodinariya, T. M., Makwana, P. R. 2013. Review on Determining Number of Cluster in K-Means Clustering-International Journal, Vol. 1, No. 6, pp.90-95.
  • [55] Kamvar, S. D., Klein, D., Manning, C. D. 2002. Interpreting and Extending Classical Agglomerative Clustering Algorithms Using a Model-Based Approach-ICML, Vol. 2, pp.283-290.
  • [56] Murtagh, F., Contreras, P. 2017. Algorithms for Hierarchical Clustering: An Overview-II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 7, No. 6, p.e1219.
  • [57] Mihić, M., Čulina, G. 2006. Buying Behavior and Consumption: Social Class Versus Income-Management: Journal of Contemporary Management Issues, Vol. 11, No. 2, pp.77-92.
  • [58] Roy, G., Debnath, R., Mitra, P. S., Shrivastava, A. K. 2021. Analytical Study of Low-Income Consumers’ Purchase Behaviour for Developing Marketing Strategy-International Journal of System Assurance Engineering and Management, Vol. 12, No. 5, pp.895-909.
  • [59] Kallier, S. M. 2017. The Influence of Real-Time Marketing Campaigns of Retailers on Consumer Purchase Behavior-International Review of Management and Marketing, Vol. 7, No. 3, pp.126-133.
  • [60] Behera, R. K., Gunasekaran, A., Gupta, S., Kamboj, S., Bala, P. K. 2020. Personalized Digital Marketing Recommender Engine-Journal of Retailing and Consumer Services, Vol. 53, p.101799.
  • [61] Olson, E. M., Olson, K. M., Czaplewski, A. J., Key, T. M. 2021. Business strategy and the Management of Digital Marketing-Business Horizons, Vol. 64, No. 2, pp.285-293.
  • [62] Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., Akinyelu, A. A. 2022. A comprehensive Survey of Clustering Algorithms: State-Of-The-Art Machine Learning Applications, Taxonomy, Challenges, and Future Research Prospects-Engineering Applications of Artificial Intelligence, Vol. 110, pp.104743.
  • [63] Goić, M., Levenier, C., Montoya, R. 2021. Drivers of Customer Satisfaction in The Grocery Retail Industry: A Longitudinal Analysis Across Store Formats-Journal of Retailing and Consumer Services, Vol. 60, p.102505.

A Deep Dive Into Customer Segmentation Through Advanced Data Mining Techniques

Yıl 2025, Cilt: 27 Sayı: 80, 272 - 283, 23.05.2025
https://doi.org/10.21205/deufmd.2025278014

Öz

This study examines how data mining techniques are used to segment customers to reveal complex customer profiles in a grocery store's database. Customer segmentation is crucial to effectively tailor marketing strategies. This procedure makes it easier to create customized customer profiles, making it possible to create more targeted and effective marketing campaigns. The dataset used in the study was obtained from the database of a well-known grocery company and contains 2.240 data points with 29 different features. These features are grouped into four categories: customer demographics, product information, purchase channels and promotional response data. The study attempts to identify meaningful patterns and groupings among customers using advanced clustering techniques such as K-Means Clustering and Agglomerative Clustering. Another goal of the research is to demonstrate how data mining and machine learning techniques can be effectively applied to customer segmentation, a critical component of adapting to the ever- changing complexity of the market and changes in customer behavior. Within the scope of the research, four customer clusters emerged. Clusters represent meaningful subsets and trends among customers, encompassing a range of features such as demographics, purchasing patterns, and responses to marketing campaigns. The findings provide a useful framework for understanding the complexity of customer profiles and adapting marketing strategies accordingly.

Kaynakça

  • [1] Hung, P. D., Lien, N. T. T., Ngoc, N. D. 2019. Customer Segmentation Using Hierarchical Agglomerative Clustering, 2nd International Conference on Information Science and Systems, 16 – 19 March-2019, Tokyo, Japan, pp.33-37.
  • [2] Huang, S. 2014. Method for Customer Segmentation Based on Three-Way Decisions Theory-Journal of Computer Applications, Vol. 34, No. 1, p.244.
  • [3] Tabianan, K., Velu, S., Ravi, V. 2022. K-means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data-Sustainability, Vol. 14, No. 12, p.7243.
  • [4] Goyat, S. 2011. The Basis of Market Segmentation: A Critical Review of Literature-European Journal of Business and Management, Vol. 3, No. 9, p.45-54.
  • [5] Thakur, R., Workman, L. 2016. Customer Portfolio Management (CPM) for Improved Customer Relationship Management (CRM): Are Your Customers Platinum, Gold, Silver, or Bronze?-Journal of Business Research, Vol. 69, No. 10, pp.4095-4102.
  • [6] Khandpur, N., Zatz, L. Y., Bleich, S. N., Taillie, L. S., Orr, J. A., Rimm, E. B., Moran, A. J. 2020. Supermarkets in Cyberspace: A Conceptual Framework to Capture the Influence of Online Food Retail Environments on Consumer Behavior-International Journal of Environmental Research and Public Health, Vol. 17, No. 22, p.8639.
  • [7] Diba, K., Batoulis, K., Weidlich, M., Weske, M. 2020. Extraction, Correlation, and Abstraction of Event Data for Process Mining-Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 10, No. 3, p.e1346.
  • [8] Arora, P., Varshney, S. 2016. Analysis of K-means and K-medoids Algorithm for Big Data-Procedia Computer Science, Vol. 78, p.507-512.
  • [9] Cosenz, F., Bivona, E. 2021. Fostering Growth Patterns of SMEs Through Business Model Innovation. A Tailored Dynamic Business Modelling Approach-Journal of Business Research, Vol. 130, pp. 658-669.
  • [10] Lefait, G., Kechadi, T. 2010. Customer Segmentation Architecture Based on Clustering Techniques. 2010 Fourth International Conference on Digital Society, 10-16 February-2010, St. Maarten, Netherlands Antilles, 243-248.
  • [11] Steenkamp, J. B. E., Ter Hofstede, F. 2002. International Market Segmentation: Issues and Perspectives-International Journal of Research in Marketing, Vol. 19, No. 3, pp.185-213.
  • [12] Smith, W. R. 1956. Product Differentiation and Market Segmentation as Alternative Marketing Strategies-Journal of Marketing, Vol. 21, No. 1, pp.3-8.
  • [13] Tynan, A. C., Drayton, J. 1987. Market Segmentation-Journal of Marketing Management, Vol. 2, No. 3, pp.301-335.
  • [14] Zhang, J. Z., Chang, C. W. 2021. Consumer Dynamics: Theories, Methods, and Emerging Directions-Journal of the Academy of Marketing Science, Vol. 49, p.166-196.
  • [15] Shahid, S., Paul, J. 2021. Intrinsic Motivation of Luxury Consumers in An Emerging Market-Journal of Retailing and Consumer Services, Vol. 61, p.102531.
  • [16] Beauvisage, T., Beuscart, J. S., Coavoux, S., Mellet, K. 2023. How Online Advertising Targets Consumers: The Uses of Categories and Algorithmic Tools by Audience Planners-New Media & Society, Vol. 46, p.14614448221146174.
  • [17] Surendro, K. 2019. Predictive Analytics for Predicting Customer Behavior, 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 13-15 March-2019, Yogyakarta, Indonesia, pp.230-233.
  • [18] Kotras, B. 2020. Mass Personalization: Predictive Marketing Algorithms and the Reshaping of Consumer Knowledge-Big Data & Society, Vol. 7, No. 2, p.2053951720951581.
  • [19] Soni, V. 2021. Deep Learning and Computer Vision-Based Retail Analytics for Customer Interaction and Response Monitoring-Eigenpub Review of Science and Technology, Vol. 5, No. 1, pp.1-15.
  • [20] Verma, R. K., Kumari, N. 2023. Generative AI as a Tool for Enhancing Customer Relationship Management Automation and Personalization Techniques-International Journal of Responsible Artificial Intelligence, Vol. 13, No. 9, pp.1-8.
  • [21] Bharadiya, J. P. 2022. Driving Business Growth with Artificial Intelligence and Business Intelligence-International Journal of Computer Science and Technology, Vol. 6, No. 4, pp.28-44.
  • [22] Capuano, N., Greco, L., Ritrovato, P., Vento, M. 2021. Sentiment Analysis for Customer Relationship Management: An Incremental Learning Approach-Applied Intelligence, Vol. 51, pp.3339-3352.
  • [23] Verma, S. 2022. Sentiment Analysis of Public Services for Smart Society: Literature Review and Future Research Directions-Government Information Quarterly, Vol. 39, No. 3, pp.101708.
  • [24] Yang, J., Xiu, P., Sun, L., Ying, L., Muthu, B. 2022. Social Media Data Analytics for Business Decision Making System to Competitive Analysis. Information Processing & Management, Vol. 59, No. 1, p.102751.
  • [25] Zhang, C., Wang, X., Cui, A. P., Han, S. 2020. Linking Big Data Analytical Intelligence to Customer Relationship Management Performance. Industrial Marketing Management, Vol. 91, pp.483-494.
  • [26] Amarasinghe, H. 2023. Transformative Power of AI in Customer Relationship Management (CRM): Potential Benefits, Pitfalls, and Best Practices for Modern Enterprises. International Journal of Social Analytics, Vol. 8, No. 8, pp.1-10.
  • [27] Dasu, T., Johnson, T. 2003. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, Hoboken.
  • [28] Carnein, M., Trautmann, H. 2019. Customer Segmentation Based on Transactional Data Using Stream Clustering. Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference, 14-17 April-2019, Macau, China, pp.280-292.
  • [29] Punhani, R., Arora, V. P. S., Sabitha, A. S., Shukla, V. K. 2021. Segmenting E-Commerce Customer Through Data Mining Techniques-Journal of Physics: Conference Series, Vol. 1714, No. 1, p.012026.
  • [30] Hermanto, H., Sulistyan, R. B., Touati, H. 2022. Service Satisfaction Based on Performance Index and Importance Performance Analysis (IPA)-Innovation Business Management and Accounting Journal, Vol. 1, No. 2, pp.41-52.
  • [31] Müller, N. M., Markert, K. 2019. Identifying Mislabeled Instances in Classification Datasets. 2019 International Joint Conference on Neural Networks (IJCNN), 14-19 July-2019, Budapest, Hungary, pp.1-8.
  • [32] Mach-Król, M., Hadasik, B. 2021. On a Certain Research Gap in Big Data Mining for Customer Insights-Applied Sciences, Vol. 11, No. 15, p.6993.
  • [33] Hossain, M., Sattar, A. S., Paul, M. K. 2019. Market Basket Analysis Using Apriori and FP Growth Algorithm. 2019 22nd international conference on computer and information technology (ICCIT), 18-20 December-2019, Dhaka, Bangladesh, pp.1-6.
  • [34] Laxmi, K. R., Srivastava, S., Madhuravani, K., Pallavi, S., Dewangan, O. 2022. Modified Cross‐Sell Model for Telecom Service Providers Using Data Mining Techniques-Data Mining and Machine Learning Applications, pp.195-207.
  • [35] Kumar, S., Kar, A. K., Ilavarasan, P. V. 2021. Applications of Text Mining in Services Management: A Systematic Literature Review-International Journal of Information Management Data Insights, Vol. 1, No. 1, p.100008.
  • [36] Koehn, D., Lessmann, S., Schaal, M. 2020. Predicting Online Shopping Behaviour from Clickstream Data Using Deep Learning-Expert Systems with Applications, Vol. 150, p.113342.
  • [37] Olmezogullari, E., Aktas, M. S. 2022. Pattern2vec: Representation of Clickstream Data Sequences for Learning User Navigational Behavior-Concurrency and Computation: Practice and Experience, Vol. 34, No. 9, p.e6546.
  • [38] Anitha, P., Patil, M. M. 2022. RFM Model for Customer Purchase Behavior Using K-Means Algorithm-Journal of King Saud University-Computer and Information Sciences, Vol. 34, No. 5, pp.1785-1792.
  • [39] Safa, N. S., Ghani, N. A., Ismail, M. A. 2014. An Artificial Neural Network Classification Approach for Improving Accuracy of Customer Identification in E-Commerce-Malaysian Journal of Computer Science, Vol. 27, No. 3, pp.171-185.
  • [40] Ahmad, A. K., Jafar, A., Aljoumaa, K. 2019. Customer Churn Prediction in Telecom Using Machine Learning in Big Data Platform-Journal of Big Data, Vol. 6, No. 1, pp.1-24.
  • [41] Dash, A., Chakraborty, A., Ghosh, S., Mukherjee, A., Gummadi, K. P. 2021. When The Umpire is Also a Player: Bias in Private Label Product Recommendations on E-Commerce Marketplaces. 2021 ACM Conference on Fairness, Accountability, and Transparency, 3-10 March-2021, Online, pp.873-884.
  • [42] Ernawati, E., Baharin, S. S. K., Kasmin, F. 2021. A Review of Data Mining Methods in RFM-Based Customer Segmentation-Journal of Physics: Conference Series, Vol. 1869, No. 1, p.012085.
  • [43] Kamath, C. 2001. On Mining Scientific Datasets-Data Mining for Scientific and Engineering Applications, p.1-21.
  • [44] Raj, P., Kumar, S. A. 2017. Big Data Analytics Processes and Platforms Facilitating Smart Cities-Smart cities: Foundations, Principles, and Applications, pp.23-52.
  • [45] Grira, N., Crucianu, M., Boujemaa, N. 2004. Unsupervised and Semi-Supervised Clustering: A Brief Survey-A Review of Machine Learning Techniques for Processing Multimedia Content, Vol. 1, No. 2004, p.9-16.
  • [46] Gasch, A. P., Eisen, M. B. 2002. Exploring the Conditional Coregulation of Yeast Gene Expression Through Fuzzy K-Means Clustering-Genome Biology, Vol. 3, No. 11, pp.1-22.
  • [47] Mutihac, L., Mutihac, R. 2008. Mining in Chemometrics-Analytica Chimica Acta, Vol. 612, No. 1, pp.1-18.
  • [48] Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., Song, A. 2015. Efficient Agglomerative Hierarchical Clustering-Expert Systems with Applications, Vol. 42, No. 5, p.2785-2797.
  • [49] Yuan, C., Yang, H. 2019. Research on K-Value Selection Method of K-Means Clustering Algorithm-J — Multidisciplinary Scientific Journal, Vol. 2, No. 2, pp.226-235.
  • [50] Alkhayrat, M., Aljnidi, M., Aljoumaa, K. 2020. A Comparative Dimensionality Reduction Study in Telecom Customer Segmentation Using Deep Learning And PCA-Journal of Big Data, Vol. 7, pp.1-23.
  • [51] Zheng, A., Casari, A. 2018. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O'Reilly Media, Inc, California, USA.
  • [52] Reddy, G. T., Reddy, M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G., Baker, T. 2020. Analysis of Dimensionality Reduction Techniques on Big Data-IEEE Access, Vol. 8, pp.54776-54788.
  • [53] Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., Liu, J. 2021. A Quantitative Discriminant Method of Elbow Point for the Optimal Number of Clusters in Clustering Algorithm-Eurasip Journal on Wireless Communications and Networking, Vol. 2021, No. 1, pp.1-16.
  • [54] Kodinariya, T. M., Makwana, P. R. 2013. Review on Determining Number of Cluster in K-Means Clustering-International Journal, Vol. 1, No. 6, pp.90-95.
  • [55] Kamvar, S. D., Klein, D., Manning, C. D. 2002. Interpreting and Extending Classical Agglomerative Clustering Algorithms Using a Model-Based Approach-ICML, Vol. 2, pp.283-290.
  • [56] Murtagh, F., Contreras, P. 2017. Algorithms for Hierarchical Clustering: An Overview-II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 7, No. 6, p.e1219.
  • [57] Mihić, M., Čulina, G. 2006. Buying Behavior and Consumption: Social Class Versus Income-Management: Journal of Contemporary Management Issues, Vol. 11, No. 2, pp.77-92.
  • [58] Roy, G., Debnath, R., Mitra, P. S., Shrivastava, A. K. 2021. Analytical Study of Low-Income Consumers’ Purchase Behaviour for Developing Marketing Strategy-International Journal of System Assurance Engineering and Management, Vol. 12, No. 5, pp.895-909.
  • [59] Kallier, S. M. 2017. The Influence of Real-Time Marketing Campaigns of Retailers on Consumer Purchase Behavior-International Review of Management and Marketing, Vol. 7, No. 3, pp.126-133.
  • [60] Behera, R. K., Gunasekaran, A., Gupta, S., Kamboj, S., Bala, P. K. 2020. Personalized Digital Marketing Recommender Engine-Journal of Retailing and Consumer Services, Vol. 53, p.101799.
  • [61] Olson, E. M., Olson, K. M., Czaplewski, A. J., Key, T. M. 2021. Business strategy and the Management of Digital Marketing-Business Horizons, Vol. 64, No. 2, pp.285-293.
  • [62] Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., Akinyelu, A. A. 2022. A comprehensive Survey of Clustering Algorithms: State-Of-The-Art Machine Learning Applications, Taxonomy, Challenges, and Future Research Prospects-Engineering Applications of Artificial Intelligence, Vol. 110, pp.104743.
  • [63] Goić, M., Levenier, C., Montoya, R. 2021. Drivers of Customer Satisfaction in The Grocery Retail Industry: A Longitudinal Analysis Across Store Formats-Journal of Retailing and Consumer Services, Vol. 60, p.102505.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Mühendisliği, Ergonomi ve İnsan Faktörleri Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Vahid Sinap 0000-0002-8734-9509

Gönderilme Tarihi 19 Şubat 2024
Kabul Tarihi 6 Ekim 2024
Erken Görünüm Tarihi 12 Mayıs 2025
Yayımlanma Tarihi 23 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 80

Kaynak Göster

Vancouver Sinap V. A Deep Dive Into Customer Segmentation Through Advanced Data Mining Techniques. DEUFMD. 2025;27(80):272-83.

Bu dergi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) altında lisanslanmıştır.

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTE1Nywibm9uY2UiOiJhZDRmNjNlNzdhOWYwOWQ4YTNjNGVmNGIxOTFlZWViNyJ9.4Dxgc9mc-p4Tyti8NTU5pxEfGUWeuJud1fPWxu2mUy8