BibTex RIS Kaynak Göster

THE USE OF SPECTRAL ENTROPY OF EEG TO PREDICT ANESTHESIA DEPTH ON THE DSPIC BASED SYSTEM

Yıl 2012, Cilt: 14 Sayı: 1, 1 - 9, 01.01.2012

Öz

Many of the EEG analysis methods are used to monitor the depth of anesthesia. All of
these methods are off-line based; therefore, the real-time based methods still need to be
developed. Our aim is to develop a real-time dsPIC based EEG analysis system for evaluating
of deep anesthesia and of awake states. It was shown that there were quite similarities
between the actual hypnogram values and the calculated EEG based measures. Consequently,
we could say that this study has enough potential application to develop an anesthesia
monitoring device

Kaynakça

  • R. Ferenets, T. Lipping, A. Anier, V. Jantti, Melto S., S. Hovilehto (2006): “Comparison of Entropy and Complexity Measures for the Assessment of Depth of Sedation”, IEEE Transaction on Biomedical Engineering, Cilt 53, No 6, s. 1067-1077.
  • M. Jospin, P. Caminal, E. W. Jensen, H. Litvan, M. Vallverdu, M. M. R. F. Struys, H. E. M. Vereecke, D. T. Kaplan (2007): “Detrended Fluctuation Analysis of EEG as a Measure of Depth Anesthesia”, IEEE Transaction on Biomedical Engineering, Cilt 54, No 5, s. 840- 846.
  • J. W. Huang, Y. Y. Lu, A. Nayak, R. J. Roy (1999): “Depth of Anesthesia Estimation and Control”, IEEE Transaction on Biomedical Engineering, Cilt 46, No 1, s. 71-81.
  • J. Muthuswamy, R. J. Roy (1999): “The Use of Fuzzy Integrals and Bispectral Analysis of the Electroencephalogram to Predict Movement under Anesthesia”, IEEE Transaction on Biomedical Engineering, Cilt 46, No 3, s. 291-299.
  • I. A. Rezek, S. J. Roberts (1998): “Stohastic Complexity Measures for Physiological Signal Analysis”, IEEE Transaction on Biomedical Engineering, Cilt 45, No 9, s. 1186-1191.
  • S. Sanei, J. A. Chambers (2007): “EEG Signal Processing”, John Wiley & Sons Inc.
  • M. Taheri, B. Ahmadi, R. Amirfattahi, M. Mansouri (2009): “Assessment of Depth of Anesthesia Using Principal Component Analysis”, J. Biomedical Science and Engineering, Cilt 2, s. 9-15.
  • X. S. Zhang, R. J. Roy (2001): “Derived Fuzzy Knowledge Model for Estimating the Depth of Anesthesia”, IEEE Transaction on Biomedical Engineering, Cilt 48, No 3, s. 312-323.
  • X. S. Zhang, R. J. Roy, E. W. Jensen (2001): “EEG Complexity as a Measure of Depth of Anesthesia for Patients”, IEEE Transaction on Biomedical Engineering, Cilt 48, No 12, s. 1424-1433.

DSPIC TABANLI SİSTEM İLE ANESTEZİ DERİNLİĞİNİN EEG İZGESEL ENTROPİ KULLANARAK KESTİRİMİ

Yıl 2012, Cilt: 14 Sayı: 1, 1 - 9, 01.01.2012

Öz

Anestezi derinliği ölçmek için birçok EEG (Elektroensaflogram) analiz yöntemi
kullanılmaktadır. Bu yöntemlerin tümü çevrim dışı tabanlı olduğundan, gerçek zaman tabanlı
yöntemlerin geliştirilmesine hala gereksinim vardır. Çalışmadaki amaç, derin anestezi ve
uyanıklık durumlarının değerlendirilmesi için gerçek zaman dsPIC tabanlı EEG analiz sistemi
geliştirmektir. Gerçek hipnogram değerleri ve hesaplanmış EEG tabanlı ölçümler arasında
benzerlikler olduğu gösterilmiştir. Sonuç olarak bu çalışmanın anestezi izleme aygıtı
geliştirmek için yeterli birikime sahip olduğu söylenebilir.

Kaynakça

  • R. Ferenets, T. Lipping, A. Anier, V. Jantti, Melto S., S. Hovilehto (2006): “Comparison of Entropy and Complexity Measures for the Assessment of Depth of Sedation”, IEEE Transaction on Biomedical Engineering, Cilt 53, No 6, s. 1067-1077.
  • M. Jospin, P. Caminal, E. W. Jensen, H. Litvan, M. Vallverdu, M. M. R. F. Struys, H. E. M. Vereecke, D. T. Kaplan (2007): “Detrended Fluctuation Analysis of EEG as a Measure of Depth Anesthesia”, IEEE Transaction on Biomedical Engineering, Cilt 54, No 5, s. 840- 846.
  • J. W. Huang, Y. Y. Lu, A. Nayak, R. J. Roy (1999): “Depth of Anesthesia Estimation and Control”, IEEE Transaction on Biomedical Engineering, Cilt 46, No 1, s. 71-81.
  • J. Muthuswamy, R. J. Roy (1999): “The Use of Fuzzy Integrals and Bispectral Analysis of the Electroencephalogram to Predict Movement under Anesthesia”, IEEE Transaction on Biomedical Engineering, Cilt 46, No 3, s. 291-299.
  • I. A. Rezek, S. J. Roberts (1998): “Stohastic Complexity Measures for Physiological Signal Analysis”, IEEE Transaction on Biomedical Engineering, Cilt 45, No 9, s. 1186-1191.
  • S. Sanei, J. A. Chambers (2007): “EEG Signal Processing”, John Wiley & Sons Inc.
  • M. Taheri, B. Ahmadi, R. Amirfattahi, M. Mansouri (2009): “Assessment of Depth of Anesthesia Using Principal Component Analysis”, J. Biomedical Science and Engineering, Cilt 2, s. 9-15.
  • X. S. Zhang, R. J. Roy (2001): “Derived Fuzzy Knowledge Model for Estimating the Depth of Anesthesia”, IEEE Transaction on Biomedical Engineering, Cilt 48, No 3, s. 312-323.
  • X. S. Zhang, R. J. Roy, E. W. Jensen (2001): “EEG Complexity as a Measure of Depth of Anesthesia for Patients”, IEEE Transaction on Biomedical Engineering, Cilt 48, No 12, s. 1424-1433.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA45SP99VB
Yazarlar

Erkan Zeki Engin Bu kişi benim

Mehmet Engin Bu kişi benim

Gökhan Alpan Bu kişi benim

Uğur Aydın Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 14 Sayı: 1

Kaynak Göster

Vancouver Engin EZ, Engin M, Alpan G, Aydın U. DSPIC TABANLI SİSTEM İLE ANESTEZİ DERİNLİĞİNİN EEG İZGESEL ENTROPİ KULLANARAK KESTİRİMİ. DEUFMD. 2012;14(1):1-9.

Bu dergi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY-NC 4.0) altında lisanslanmıştır.

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTE1Nywibm9uY2UiOiJhZDRmNjNlNzdhOWYwOWQ4YTNjNGVmNGIxOTFlZWViNyJ9.4Dxgc9mc-p4Tyti8NTU5pxEfGUWeuJud1fPWxu2mUy8