Araştırma Makalesi
BibTex RIS Kaynak Göster

Deprem Giriş Enerjisi İle Spektral Hız Arasındaki İlişkinin İrdelenmesi

Yıl 2020, , 825 - 839, 22.09.2020
https://doi.org/10.21205/deufmd.2020226617

Öz

Deprem
etkisine göre tasarım için önerilen enerji esaslı analiz yöntemleri sahip
oldukları üstünlükler nedeniyle gün geçtikçe daha fazla ilgi görmektedir.
Analizde depremin süresi ve frekans içeriğinin dikkate alınabiliyor olması bu
tür yöntemlerin en önemli üstünlükleridir. Enerji esaslı analiz yöntemlerinin
başarılı sonuç üretebilmesi için yapı sistemine giren deprem enerjisinin “doğru”
tahmini önem taşımaktadır. Enerji denge denkleminin çözümüyle giren deprem
enerjini elde etmek zahmetli bir işlem olduğundan, bu büyüklük literatürde genellikle
eşdeğer spektral hız cinsinden ifade edilmektedir. Bu ilişkinin sadece sönümsüz
sistemler için geçerli olacağı literatürde tartışılmaktadır. Bu bağlamda, yapısal
sönümün yapıya aktarılan deprem enerjisi ile eşdeğer hız arasındaki ilişkiye
olan etkisi bu çalışmada kanıtlanmıştır. Çok sayıda deprem kaydı ve farklı
sönüm özellikleri için zaman tanım alanında analizler gerçekleştirilmiştir.
Deprem kayıtlarının seçiminde kayma dalgası hızı (
Vs30) ve kayıt
türü (sıradan ve darbe etkili) değişkenleri dikkate alınmıştır.
Gerçekleştirilen analizler sonucunda, yapıya aktarılan deprem enerjisi ile
eşdeğer spektral hız arasındaki ilişkinin farklı sönüm özellikleri için aynı
olmadığı görülmüştür. Mevcut ilişki için yeni katsayılar önerilmiştir.

Kaynakça

  • [1] Structural Engineers Association of California (SEAOC) VISION 200 Committee. 1995. Performance Based Seismic Design of Buildings; vol 1.
  • [2] Chou, C.C, Uang, C.M. 2000. Establishing Absorbed Energy Spectra – An Attenuation Aprroach. Earthquake Engineering and Structural Dynamics, Cilt. 29, No. 10, s. 1441-1455.
  • [3] Güllü, A., Yüksel, E., Yalçın, C., Dindar, A.A., Özkaynak, O., Büyüköztürk, O. 2019. An Improved Input Energy Spectrum Verified by The Shake Table Tests Earthquake Engineering and Structural Dynamics, Cilt. 48, s. 27-45. DOI: 10.1002/eqe.3121.
  • [4] Housner, G.W. 1956. Limit Design of The Structures to Resist Earthquakes. 1st World Conference on Earthquake Engineering, Berkeley: California.
  • [5] Akiyama, H. 1985. Earthquake Resistant Limit State Design for Buildings. University of Tokyo Press.
  • [6] Uang, C.M, Bertero, V.V. 1990. Evaluation of Seismic Energy in Structures. Earthquake Engineering and Structural Dynamics. Cilt. 19, No. 1, s. 77-90.
  • [7] Kuwamura, H., Halambos, T.V. 1989. Earthquake Load for Structural Reliability. Journal of Structural Engineering. Cilt. 115, No. 6, s. 1446-1462.
  • [8] Chai, Y.H., Fajfar, P., Romstad, K.M. 1998. Formulation of Duration-Dependent Inelastic Seismic Design Spectrum. Journal of Structural Engineering. Cilt. 124, No. 8, s. 913-934.
  • [9] Chapman, C.M. 1999. On the Use of Elastic Input Energy For Seismic Hazard Analyses. Earthquake Spectra. Cilt. 15, No.1, s. 607-635.
  • [10] Cheng, Y., Lucchini, A., Mollaioli, F. 2014. Proposal of New Ground Motion Prediction Equations for Elastic Input Energy Spectra. Earthquakes and Structures. Cilt. 7, No. 4, s. 485-510.
  • [11] Alıcı, F.S., Sucuoğlu, H. 2016. Prediction of Input Energy Spectrum: Attenuation Models and Velocity Spectrum Scaling. Earthquake Engineering and Structural Dynamics. Cilt. 45, No. 13, s. 2137-2161.
  • [12] Merter, O., Bozdağ, Ö., Düzgün, M. 2012. Energy-Based Design of Steel Structures According to the Predefined Interstory Drift Ratio. Teknik Dergi. Cilt. 23, No. 1, s. 5777-5798.
  • [13] Merter, O., Uçar, T. 2017. Energy-Based Design Base Shear for RC Frames Considering Global Failure Mechanism and Reduced Hysteretic Behavior. Structural Engineering and Mechanics. Cilt. 63, No. 1, s. 23-35.
  • [14] Güllü, A., Yüksel, E., Yalçın, C., Dindar, A.A., Özkaynak, H. 2017. Experimental Verification of the Elastic Input Energy Spectrum and a Suggestion. International Conference on Interdiciplinary Perspectives for Future Building Envelopes. Istanbul: Turkey.
  • [15] Cheng, Y., Lucchini, A., Mollaioli, F. 2019. Ground-Motion Prediction Equations for Constant-Strength and Constant-Ductility Input Energy Spectra. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-019-00725 -x
  • [16] PEER Ground Motio Database, NGA‐West2. http://ngawest2.berkeley.edu/.
  • [17] Güllü, A. Determination of the Inelastic Displacement Demand and Response Control of Steel Structures by Seismic Energy Equations. Istanbul Technical University, Institute for Science and Technology, PhD Dissertation, 178s, İstanbul.
  • [18] Güllü A, Yüksel E. 2019. Piece-wise Exact Computation of Seismic Energy Balance Equation. International Conference on Civil, Structural & Environmental Engineering Computing. September 16-19, Riva del Garda, Italy.
  • [19] Arias, A. 1985. A Major of Earthquake Intensity. Hansen, R., J., ed. 1985. MIT Press Cambridge.
  • [20] Trifunac, M.D., Brandy, A.G. 1975. A Study on the Duration of Strong Ground Motion. Bulletin of the Seismological Society of America. Cilt. 65, No. 3, s. 585-626.
  • [21] Lopez-Almansa, F., Yazgan, A.U., Benavent-Climent, A. 2013. Desing Input Energy Spectra for High Seismicity Regions Based on Turkish Registers. Bulletin of Earthquake Engineering. Cilt. 11, s. 885-912.
  • [22] Alıcı, S.F., Sucuoğlu, H. 2018. Elastic and Inelastic Near-Fault Input Energy Spectra. Earthquake Spectra. Cilt. 24, No. 2, s. 611-637.
  • [23] Sütçü, F., Inoue, N., Hori, N. 2006. Damper Design of a Structure with a Displacement Controlled Soft-Story. Journal of Structural Engineering (Architectural Institute of Japan). Cilt. 52B, s. 255-260.
  • [24] Benavent-Climent, A., Zahran, R. 2010. An Energy Based Procedure for the Assessment of Seismic Capacity of Existing Frames: Application to RC Wide Beam System in Spain. Soil Dynamics and Earthquake Engineering. Cilt. 30, s. 354-367.
  • [25] Bruneau, W., Wang, N. 1996. Some Aspects of Energy Methods for the Inelastic Seismic Response of Ductile SDOF Structures. Engineering Structures. Cilt. 18, No. 1, s. 1-12.
  • [26] Ye, L., Cheng, G., Qu, Z. 2009. Study on Energy-Based Seismic Design Method and the Application for Steel Braced Frame Structures. International Conference on Urban Earthquake Engineering. Tokyo, Japan.
  • [27] Zhou, Y., Song, G., Huang, S., Wu, H. 2019. Input Energy Spectra for Self-Centering SDOF Systems. Soil Dynamics and Earthquake Engineering. Cilt. 121, s. 293-305.
  • [28] Zhou, Y., Song, G., Tan, p. Hysteretic Energy Demand for Self-Centering SDOF Systems. Soil Dynamics and Earthquake Engineering. Cilt. 125, s. 105703.

Evaluation of the Relation between Seismic Input Energy and Spectral Velocity

Yıl 2020, , 825 - 839, 22.09.2020
https://doi.org/10.21205/deufmd.2020226617

Öz

Energy based
seismic design concept is getting attention owing to its advantages over the
conventional methodologies. Particularly, the consideration of duration and
frequency content of the earthquake record are chief superiority of the
concept. For this original design procedure, accurate determination of seismic
input energy is crucially important. Because of solving energy balance equation
is a tedious job, the seismic input energy is determined in terms of equivalent velocity in the literature
mostly. However, it was also shown that this relation is valid for only
undamped systems. Therefore, this study aims to provide the nonsteady relation
between seismic input energy and equivalent velocity for damped systems.
Intensive response history analyses were performed by using plenty of earthquake
records those were selected by considering the impulsive characteristics
(ordinary and pulse-like) and shear wave velocity. It was found that the
relation given in the literature for seismic input energy and spectral velocity
relation is not true for damped systems. Dependently, it is proposed a set of
coefficients considering structural damping properties to modify the existing
relation
.

Kaynakça

  • [1] Structural Engineers Association of California (SEAOC) VISION 200 Committee. 1995. Performance Based Seismic Design of Buildings; vol 1.
  • [2] Chou, C.C, Uang, C.M. 2000. Establishing Absorbed Energy Spectra – An Attenuation Aprroach. Earthquake Engineering and Structural Dynamics, Cilt. 29, No. 10, s. 1441-1455.
  • [3] Güllü, A., Yüksel, E., Yalçın, C., Dindar, A.A., Özkaynak, O., Büyüköztürk, O. 2019. An Improved Input Energy Spectrum Verified by The Shake Table Tests Earthquake Engineering and Structural Dynamics, Cilt. 48, s. 27-45. DOI: 10.1002/eqe.3121.
  • [4] Housner, G.W. 1956. Limit Design of The Structures to Resist Earthquakes. 1st World Conference on Earthquake Engineering, Berkeley: California.
  • [5] Akiyama, H. 1985. Earthquake Resistant Limit State Design for Buildings. University of Tokyo Press.
  • [6] Uang, C.M, Bertero, V.V. 1990. Evaluation of Seismic Energy in Structures. Earthquake Engineering and Structural Dynamics. Cilt. 19, No. 1, s. 77-90.
  • [7] Kuwamura, H., Halambos, T.V. 1989. Earthquake Load for Structural Reliability. Journal of Structural Engineering. Cilt. 115, No. 6, s. 1446-1462.
  • [8] Chai, Y.H., Fajfar, P., Romstad, K.M. 1998. Formulation of Duration-Dependent Inelastic Seismic Design Spectrum. Journal of Structural Engineering. Cilt. 124, No. 8, s. 913-934.
  • [9] Chapman, C.M. 1999. On the Use of Elastic Input Energy For Seismic Hazard Analyses. Earthquake Spectra. Cilt. 15, No.1, s. 607-635.
  • [10] Cheng, Y., Lucchini, A., Mollaioli, F. 2014. Proposal of New Ground Motion Prediction Equations for Elastic Input Energy Spectra. Earthquakes and Structures. Cilt. 7, No. 4, s. 485-510.
  • [11] Alıcı, F.S., Sucuoğlu, H. 2016. Prediction of Input Energy Spectrum: Attenuation Models and Velocity Spectrum Scaling. Earthquake Engineering and Structural Dynamics. Cilt. 45, No. 13, s. 2137-2161.
  • [12] Merter, O., Bozdağ, Ö., Düzgün, M. 2012. Energy-Based Design of Steel Structures According to the Predefined Interstory Drift Ratio. Teknik Dergi. Cilt. 23, No. 1, s. 5777-5798.
  • [13] Merter, O., Uçar, T. 2017. Energy-Based Design Base Shear for RC Frames Considering Global Failure Mechanism and Reduced Hysteretic Behavior. Structural Engineering and Mechanics. Cilt. 63, No. 1, s. 23-35.
  • [14] Güllü, A., Yüksel, E., Yalçın, C., Dindar, A.A., Özkaynak, H. 2017. Experimental Verification of the Elastic Input Energy Spectrum and a Suggestion. International Conference on Interdiciplinary Perspectives for Future Building Envelopes. Istanbul: Turkey.
  • [15] Cheng, Y., Lucchini, A., Mollaioli, F. 2019. Ground-Motion Prediction Equations for Constant-Strength and Constant-Ductility Input Energy Spectra. Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-019-00725 -x
  • [16] PEER Ground Motio Database, NGA‐West2. http://ngawest2.berkeley.edu/.
  • [17] Güllü, A. Determination of the Inelastic Displacement Demand and Response Control of Steel Structures by Seismic Energy Equations. Istanbul Technical University, Institute for Science and Technology, PhD Dissertation, 178s, İstanbul.
  • [18] Güllü A, Yüksel E. 2019. Piece-wise Exact Computation of Seismic Energy Balance Equation. International Conference on Civil, Structural & Environmental Engineering Computing. September 16-19, Riva del Garda, Italy.
  • [19] Arias, A. 1985. A Major of Earthquake Intensity. Hansen, R., J., ed. 1985. MIT Press Cambridge.
  • [20] Trifunac, M.D., Brandy, A.G. 1975. A Study on the Duration of Strong Ground Motion. Bulletin of the Seismological Society of America. Cilt. 65, No. 3, s. 585-626.
  • [21] Lopez-Almansa, F., Yazgan, A.U., Benavent-Climent, A. 2013. Desing Input Energy Spectra for High Seismicity Regions Based on Turkish Registers. Bulletin of Earthquake Engineering. Cilt. 11, s. 885-912.
  • [22] Alıcı, S.F., Sucuoğlu, H. 2018. Elastic and Inelastic Near-Fault Input Energy Spectra. Earthquake Spectra. Cilt. 24, No. 2, s. 611-637.
  • [23] Sütçü, F., Inoue, N., Hori, N. 2006. Damper Design of a Structure with a Displacement Controlled Soft-Story. Journal of Structural Engineering (Architectural Institute of Japan). Cilt. 52B, s. 255-260.
  • [24] Benavent-Climent, A., Zahran, R. 2010. An Energy Based Procedure for the Assessment of Seismic Capacity of Existing Frames: Application to RC Wide Beam System in Spain. Soil Dynamics and Earthquake Engineering. Cilt. 30, s. 354-367.
  • [25] Bruneau, W., Wang, N. 1996. Some Aspects of Energy Methods for the Inelastic Seismic Response of Ductile SDOF Structures. Engineering Structures. Cilt. 18, No. 1, s. 1-12.
  • [26] Ye, L., Cheng, G., Qu, Z. 2009. Study on Energy-Based Seismic Design Method and the Application for Steel Braced Frame Structures. International Conference on Urban Earthquake Engineering. Tokyo, Japan.
  • [27] Zhou, Y., Song, G., Huang, S., Wu, H. 2019. Input Energy Spectra for Self-Centering SDOF Systems. Soil Dynamics and Earthquake Engineering. Cilt. 121, s. 293-305.
  • [28] Zhou, Y., Song, G., Tan, p. Hysteretic Energy Demand for Self-Centering SDOF Systems. Soil Dynamics and Earthquake Engineering. Cilt. 125, s. 105703.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ahmet Güllü 0000-0001-6678-9372

Yayımlanma Tarihi 22 Eylül 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Güllü, A. (2020). Evaluation of the Relation between Seismic Input Energy and Spectral Velocity. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(66), 825-839. https://doi.org/10.21205/deufmd.2020226617
AMA Güllü A. Evaluation of the Relation between Seismic Input Energy and Spectral Velocity. DEUFMD. Eylül 2020;22(66):825-839. doi:10.21205/deufmd.2020226617
Chicago Güllü, Ahmet. “Evaluation of the Relation Between Seismic Input Energy and Spectral Velocity”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, sy. 66 (Eylül 2020): 825-39. https://doi.org/10.21205/deufmd.2020226617.
EndNote Güllü A (01 Eylül 2020) Evaluation of the Relation between Seismic Input Energy and Spectral Velocity. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 66 825–839.
IEEE A. Güllü, “Evaluation of the Relation between Seismic Input Energy and Spectral Velocity”, DEUFMD, c. 22, sy. 66, ss. 825–839, 2020, doi: 10.21205/deufmd.2020226617.
ISNAD Güllü, Ahmet. “Evaluation of the Relation Between Seismic Input Energy and Spectral Velocity”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/66 (Eylül 2020), 825-839. https://doi.org/10.21205/deufmd.2020226617.
JAMA Güllü A. Evaluation of the Relation between Seismic Input Energy and Spectral Velocity. DEUFMD. 2020;22:825–839.
MLA Güllü, Ahmet. “Evaluation of the Relation Between Seismic Input Energy and Spectral Velocity”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 22, sy. 66, 2020, ss. 825-39, doi:10.21205/deufmd.2020226617.
Vancouver Güllü A. Evaluation of the Relation between Seismic Input Energy and Spectral Velocity. DEUFMD. 2020;22(66):825-39.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.