Araştırma Makalesi
BibTex RIS Kaynak Göster

Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu

Yıl 2021, , 137 - 146, 15.01.2021
https://doi.org/10.21205/deufmd.2021236712

Öz

Magnesium ferrite nanoparticles containing organic or inorganic support materials were preparated as heterogeneous catalysts. The characterization of the catalysts was performed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), emission scanning electronic microscope/energy dispersive spectroscopy (SEM/EDS). Magnetic properties of the catalysts were determined by a vibrating sample magnetometer (VSM). Specific surface area and pore size distribution of the catalysts were obtained from nitrogen adsorption-desorption data at 77K by Brunauer-Emmett-Teller (BET) method.

Proje Numarası

Yok

Kaynakça

  • [1] Xie, X., Shen, W., 2009. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance, Nanoscale1, 1, 50-60. DOI: 10.1039/ B9NR00155G
  • [2] Song, S., Wang, H., Song, A., Dong, S., Hao, J., 2014. Sponge phase producing porous CeO2 for catalytic oxidation of CO, Chemistry–A European Journal, 20(29), 9063-9072. DOI: 10.1002/chem. 201304836
  • [3] Xie, P., Chen, L., Ma, Z., Huang, C., Huang, Z., Yue, Y., Hua, W., Tang, Y., Gao, Z., 2014. Hydrothermal conversion of Fe2O3/SiO2 spheres into Fe2O3/Silicalite-1 nanowires: Synthesis, characterization, and catalytic properties. Microporous and mesoporous materials, 200, 52-60. DOI: 10.1016/j.micromeso. 2014.08.020
  • [4] Hong, S. S., 2005. Catalytic removal of carbon particulates over MgFe2O4 catalysts, Reaction Kinetics and Catalysis Letters, 84(2), 311-317. DOI:10.1007/s11144-005-0224-3
  • [5] Ma, N., Yue, Y., Hua, W., Gao, Z., 2003. Selective oxidation of styrene over nanosized spinel-type MgxFe3−xO4 complex oxide catalysts, Applied Catalysis A: General, 251(1), 39-47. DOI: 10.1016/S0926-860X(03)00306-5
  • [6] Liu, J., Qiao, S. Z., Chen, J. S., Lou, X. W. D., Xing, X., Lu, G. Q. M., 2011. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chemical Communications, 47(47), 12578-12591. DOI: 10.1039/C1CC13658E
  • [7] Li, F., Zhu, Y., Wang, Y., 2014. Dual-responsive drug delivery system with real time tunable release behavior, Microporous and mesoporous materials, 200, 46-51. DOI: 10.1016/j.micromeso. 2014.07.060
  • [8] Hao, J., Yang, W., Zhang, Z., Pan, S., Lu, B., Ke, X., Zhang, B., Tang, J., 2013. Hierarchical flower-like Co3− xFexO4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue, Nanoscale, 5(7), 3078-3082. DOI: 10.1039/ C3NR00041A
  • [9] Yu, X. Y., Meng, Q. Q., Luo, T., Jia, Y., Sun, B., Li, Q. X., Liu, J. H., Huang, X. J., 2013. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions, Scientific reports, 3, 2886. DOI: 10.1038/srep02886
  • [10] Wang, B., Wu, H., Yu, L., Xu, R., Lim, T. T., Lou, X. W., 2012. Template‐free formation of uniform urchin‐like α‐FeOOH hollow spheres with superior capability for water treatment, Advanced Materials, 24, 1111-1116. DOI: 10.1002/adma.201104599
  • [11] Wen, Z., Zhang, Y., Dai, C., Chen, B., Guo, S., Yu, H., Wu, D., 2014. Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions, Microporous and mesoporous materials, 200, 235-244. DOI: 10.1016/j.micromeso. 2014.08.049
  • [12] Lai, X., Li, J., Korgel, B. A., Dong, Z., Li, Z., Su, F., Du, J., Wang, D., 2011. General synthesis and gas‐sensing properties of multiple‐shell metal oxide hollow microspheres, Angewandte Chemie International Edition, 50(12), 2738-2741. DOI: 10.1002/anie. 201004900
  • [13] Shao, M., Xu, X., Han, J., Zhao, J., Shi, W., Kong, X., Wei, M., Evans, D.G., Duan, X., 2011. Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors, Langmuir, 27(13), 8233-8240. DOI: 10.1021/la201521w
  • [14] Chan, A., Orme, R. P., Fricker, R. A., Roach, P., 2013. Remote and local control of stimuli responsive materials for therapeutic applications, Advanced drug delivery reviews, 65(4), 497-514. DOI: 10.1016/j.addr.2012. 07.007
  • [15] Laurent, S., Dutz, S., Häfeli, U. O., Mahmoudi, M., 2011. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Advances in colloid and interface science, 166(1-2), 8-23. DOI: 10.1016/j.cis.2011.04.003
  • [16] Maehara, T., Konishi, K., Kamimori, T., Aono, H., Hirazawa, H., Naohara, T., Nomura, S., Kikkawa, H., Watanabe, Y., Kawachi, K., 2005. Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field, Journal of materials science, 40(1), 135-138. DOI: 10.1007/s10853-005-5698-x
  • [17] Nonkumwong, J., Ananta, S., Jantaratana, P., Phumying, S., Maensiri, S., Srisombat, L., 2015. Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesized by hydrothermal technique. Journal of Magnetism and Magnetic Materials, 381, 226-234. DOI: 10.1016/j.jmmm. 2015.01.001
  • [18] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
  • [19] Ilhan, S., Izotova, S. G., Komlev, A. A., 2015. Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides, Ceramics International, 41(1), 577-585. DOI: 10.1016/j.ceramint.2014.08.106
  • [20] Sheykhan, M., Mohammadnejad, H., Akbari, J., Heydari, A., 2012. Superparamagnetic magnesium ferrite nanoparticles: a magnetically reusable and clean heterogeneous catalyst, Tetrahedron Letters, 53(24), 2959-2964. DOI: 10.1016/j.tetlet.2012.03.069
  • [21] Önal, M., 2006. Physicochemical properties of bentonites: an overview, Commun. Fac. Sci. Univ. Ank. Series B, 52, 7-21.
  • [22] Bardziński, P. J., 2014. On the impact of intermolecular interactions between the quaternary ammonium ions on interlayer spacing of quat-intercalated montmorillonite: A molecular mechanics and ab-initio study, Applied clay science, 95, 323-339. DOI: 10.1016/j.clay.2014.04.035
  • [23] AKÇAY, G., Yurdakoç, M. K., 1999. Nonyl-and dodecylamines intercalated bentonite and illite from Turkey, Turkish Journal of Chemistry, 23(1), 105-114.
  • [24] Cross, W. B., Affleck, L., Kuznetsov, M. V., Parkin, I. P., Pankhurst, Q. A., 1999. Self-propagating high-temperature synthesis of ferrites MFe2O4 (M= Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field, Journal of Materials Chemistry, 9(10), 2545-2552. DOI: 10.1039/A904431K [25] Huang, Y., Tang, Y., Wang, J., Chen, Q., 2006. Synthesis of MgFe2O4 nanocrystallites under mild conditions, Materials Chemistry and Physics, 97(2-3), 394-397, DOI: 10.1016/j.matchemphys.2005.08.035
  • [26] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
  • [27] Khot, V. M., Salunkhe, A. B., Thorat, N. D., Phadatare, M. R., Pawar, S. H., 2013. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications, Journal of Magnetism and Magnetic Materials, 332, 48-51. DOI: 10.1016/j.jmmm.2012.12.010
  • [28] Hoque, S. M., Hakim, M. A., Mamun, A., Akhter, S., Hasan, M. T., Paul, D. P., Chattopadhayay, K., 2011. Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method, Materials Sciences and Applications, 2(11), 1564. DOI: 10.4236/msa.2011.211209
  • [29] Wang, L., Ren, J., Wang, Y., Liu, X., Wang, Y., 2010. Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization, Journal of alloys and compounds, 490(1-2), 656-660. DOI: 10.1016/ j.jallcom.2009.10.131
  • [30] Yu, B. Y., Kwak, S. Y., 2011. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach, Dalton Transactions, 40(39), 9989-9998. DOI: 10.1039/C1DT10650C [31] Nejati, K., Zabihi, R., 2012. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chemistry Central Journal, 6(1), 23-28. DOI: 10.1186/1752-153X-6-23
  • [32] Sing, K. S., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57(4), 603-619.

Preparation and characterization of magnetic featured supported heterogeneous catalysts

Yıl 2021, , 137 - 146, 15.01.2021
https://doi.org/10.21205/deufmd.2021236712

Öz

Organik veya inorganik destek malzemeleri içeren magnezyum ferrit nanoparçacıklı heterojen katalizörler hazırlanmıştır. Katalizörlerin karakterizasyonu X-ışını toz kırınımı (XRD), Fourier dönüşümlü kızılötesi spektroskopi (FTIR), taramalı elektron mikroskop/enerji dağıtıcı spektroskopi (SEM/EDS) ile gerçekleştirilmiştir. Katalizörlerin manyetik özellikleri titreşimli örnek manyetometresi (VSM) ile belirlenmiştir. Katalizörlerin özgül yüzey alanı ve gözenek boyutu dağılımı, 77K'de azot adsorpsiyon-desorpsiyon verilerinden Brunauer-Emmett-Teller (BET) yöntemi ile elde edilmiştir.

Destekleyen Kurum

Yok

Proje Numarası

Yok

Teşekkür

Yok

Kaynakça

  • [1] Xie, X., Shen, W., 2009. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance, Nanoscale1, 1, 50-60. DOI: 10.1039/ B9NR00155G
  • [2] Song, S., Wang, H., Song, A., Dong, S., Hao, J., 2014. Sponge phase producing porous CeO2 for catalytic oxidation of CO, Chemistry–A European Journal, 20(29), 9063-9072. DOI: 10.1002/chem. 201304836
  • [3] Xie, P., Chen, L., Ma, Z., Huang, C., Huang, Z., Yue, Y., Hua, W., Tang, Y., Gao, Z., 2014. Hydrothermal conversion of Fe2O3/SiO2 spheres into Fe2O3/Silicalite-1 nanowires: Synthesis, characterization, and catalytic properties. Microporous and mesoporous materials, 200, 52-60. DOI: 10.1016/j.micromeso. 2014.08.020
  • [4] Hong, S. S., 2005. Catalytic removal of carbon particulates over MgFe2O4 catalysts, Reaction Kinetics and Catalysis Letters, 84(2), 311-317. DOI:10.1007/s11144-005-0224-3
  • [5] Ma, N., Yue, Y., Hua, W., Gao, Z., 2003. Selective oxidation of styrene over nanosized spinel-type MgxFe3−xO4 complex oxide catalysts, Applied Catalysis A: General, 251(1), 39-47. DOI: 10.1016/S0926-860X(03)00306-5
  • [6] Liu, J., Qiao, S. Z., Chen, J. S., Lou, X. W. D., Xing, X., Lu, G. Q. M., 2011. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries, Chemical Communications, 47(47), 12578-12591. DOI: 10.1039/C1CC13658E
  • [7] Li, F., Zhu, Y., Wang, Y., 2014. Dual-responsive drug delivery system with real time tunable release behavior, Microporous and mesoporous materials, 200, 46-51. DOI: 10.1016/j.micromeso. 2014.07.060
  • [8] Hao, J., Yang, W., Zhang, Z., Pan, S., Lu, B., Ke, X., Zhang, B., Tang, J., 2013. Hierarchical flower-like Co3− xFexO4 ferrite hollow spheres: facile synthesis and catalysis in the degradation of methylene blue, Nanoscale, 5(7), 3078-3082. DOI: 10.1039/ C3NR00041A
  • [9] Yu, X. Y., Meng, Q. Q., Luo, T., Jia, Y., Sun, B., Li, Q. X., Liu, J. H., Huang, X. J., 2013. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions, Scientific reports, 3, 2886. DOI: 10.1038/srep02886
  • [10] Wang, B., Wu, H., Yu, L., Xu, R., Lim, T. T., Lou, X. W., 2012. Template‐free formation of uniform urchin‐like α‐FeOOH hollow spheres with superior capability for water treatment, Advanced Materials, 24, 1111-1116. DOI: 10.1002/adma.201104599
  • [11] Wen, Z., Zhang, Y., Dai, C., Chen, B., Guo, S., Yu, H., Wu, D., 2014. Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions, Microporous and mesoporous materials, 200, 235-244. DOI: 10.1016/j.micromeso. 2014.08.049
  • [12] Lai, X., Li, J., Korgel, B. A., Dong, Z., Li, Z., Su, F., Du, J., Wang, D., 2011. General synthesis and gas‐sensing properties of multiple‐shell metal oxide hollow microspheres, Angewandte Chemie International Edition, 50(12), 2738-2741. DOI: 10.1002/anie. 201004900
  • [13] Shao, M., Xu, X., Han, J., Zhao, J., Shi, W., Kong, X., Wei, M., Evans, D.G., Duan, X., 2011. Magnetic-field-assisted assembly of layered double hydroxide/metal porphyrin ultrathin films and their application for glucose sensors, Langmuir, 27(13), 8233-8240. DOI: 10.1021/la201521w
  • [14] Chan, A., Orme, R. P., Fricker, R. A., Roach, P., 2013. Remote and local control of stimuli responsive materials for therapeutic applications, Advanced drug delivery reviews, 65(4), 497-514. DOI: 10.1016/j.addr.2012. 07.007
  • [15] Laurent, S., Dutz, S., Häfeli, U. O., Mahmoudi, M., 2011. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Advances in colloid and interface science, 166(1-2), 8-23. DOI: 10.1016/j.cis.2011.04.003
  • [16] Maehara, T., Konishi, K., Kamimori, T., Aono, H., Hirazawa, H., Naohara, T., Nomura, S., Kikkawa, H., Watanabe, Y., Kawachi, K., 2005. Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field, Journal of materials science, 40(1), 135-138. DOI: 10.1007/s10853-005-5698-x
  • [17] Nonkumwong, J., Ananta, S., Jantaratana, P., Phumying, S., Maensiri, S., Srisombat, L., 2015. Phase formation, morphology and magnetic properties of MgFe2O4 nanoparticles synthesized by hydrothermal technique. Journal of Magnetism and Magnetic Materials, 381, 226-234. DOI: 10.1016/j.jmmm. 2015.01.001
  • [18] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
  • [19] Ilhan, S., Izotova, S. G., Komlev, A. A., 2015. Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides, Ceramics International, 41(1), 577-585. DOI: 10.1016/j.ceramint.2014.08.106
  • [20] Sheykhan, M., Mohammadnejad, H., Akbari, J., Heydari, A., 2012. Superparamagnetic magnesium ferrite nanoparticles: a magnetically reusable and clean heterogeneous catalyst, Tetrahedron Letters, 53(24), 2959-2964. DOI: 10.1016/j.tetlet.2012.03.069
  • [21] Önal, M., 2006. Physicochemical properties of bentonites: an overview, Commun. Fac. Sci. Univ. Ank. Series B, 52, 7-21.
  • [22] Bardziński, P. J., 2014. On the impact of intermolecular interactions between the quaternary ammonium ions on interlayer spacing of quat-intercalated montmorillonite: A molecular mechanics and ab-initio study, Applied clay science, 95, 323-339. DOI: 10.1016/j.clay.2014.04.035
  • [23] AKÇAY, G., Yurdakoç, M. K., 1999. Nonyl-and dodecylamines intercalated bentonite and illite from Turkey, Turkish Journal of Chemistry, 23(1), 105-114.
  • [24] Cross, W. B., Affleck, L., Kuznetsov, M. V., Parkin, I. P., Pankhurst, Q. A., 1999. Self-propagating high-temperature synthesis of ferrites MFe2O4 (M= Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field, Journal of Materials Chemistry, 9(10), 2545-2552. DOI: 10.1039/A904431K [25] Huang, Y., Tang, Y., Wang, J., Chen, Q., 2006. Synthesis of MgFe2O4 nanocrystallites under mild conditions, Materials Chemistry and Physics, 97(2-3), 394-397, DOI: 10.1016/j.matchemphys.2005.08.035
  • [26] Kang, D., Yu, X., Ge, M., Song, W., 2015. One-step fabrication and characterization of hierarchical MgFe2O4 microspheres and their application for lead removal, Microporous and Mesoporous Materials, 207, 170-178. DOI: 10.1016/j.micromeso.2015.01.023
  • [27] Khot, V. M., Salunkhe, A. B., Thorat, N. D., Phadatare, M. R., Pawar, S. H., 2013. Induction heating studies of combustion synthesized MgFe2O4 nanoparticles for hyperthermia applications, Journal of Magnetism and Magnetic Materials, 332, 48-51. DOI: 10.1016/j.jmmm.2012.12.010
  • [28] Hoque, S. M., Hakim, M. A., Mamun, A., Akhter, S., Hasan, M. T., Paul, D. P., Chattopadhayay, K., 2011. Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method, Materials Sciences and Applications, 2(11), 1564. DOI: 10.4236/msa.2011.211209
  • [29] Wang, L., Ren, J., Wang, Y., Liu, X., Wang, Y., 2010. Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization, Journal of alloys and compounds, 490(1-2), 656-660. DOI: 10.1016/ j.jallcom.2009.10.131
  • [30] Yu, B. Y., Kwak, S. Y., 2011. Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach, Dalton Transactions, 40(39), 9989-9998. DOI: 10.1039/C1DT10650C [31] Nejati, K., Zabihi, R., 2012. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chemistry Central Journal, 6(1), 23-28. DOI: 10.1186/1752-153X-6-23
  • [32] Sing, K. S., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57(4), 603-619.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Yıldıray Aldemir Bu kişi benim 0000-0002-7162-1598

Elif Ant Bursalı 0000-0002-4040-3723

Mürüvvet Yurdakoç 0000-0002-2748-4047

Proje Numarası Yok
Yayımlanma Tarihi 15 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Aldemir, Y., Ant Bursalı, E., & Yurdakoç, M. (2021). Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(67), 137-146. https://doi.org/10.21205/deufmd.2021236712
AMA Aldemir Y, Ant Bursalı E, Yurdakoç M. Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu. DEUFMD. Ocak 2021;23(67):137-146. doi:10.21205/deufmd.2021236712
Chicago Aldemir, Yıldıray, Elif Ant Bursalı, ve Mürüvvet Yurdakoç. “Manyetik özellikli Desteklenmiş Heterojen katalizörlerin hazırlanması Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, sy. 67 (Ocak 2021): 137-46. https://doi.org/10.21205/deufmd.2021236712.
EndNote Aldemir Y, Ant Bursalı E, Yurdakoç M (01 Ocak 2021) Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 67 137–146.
IEEE Y. Aldemir, E. Ant Bursalı, ve M. Yurdakoç, “Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu”, DEUFMD, c. 23, sy. 67, ss. 137–146, 2021, doi: 10.21205/deufmd.2021236712.
ISNAD Aldemir, Yıldıray vd. “Manyetik özellikli Desteklenmiş Heterojen katalizörlerin hazırlanması Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (Ocak 2021), 137-146. https://doi.org/10.21205/deufmd.2021236712.
JAMA Aldemir Y, Ant Bursalı E, Yurdakoç M. Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu. DEUFMD. 2021;23:137–146.
MLA Aldemir, Yıldıray vd. “Manyetik özellikli Desteklenmiş Heterojen katalizörlerin hazırlanması Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 23, sy. 67, 2021, ss. 137-46, doi:10.21205/deufmd.2021236712.
Vancouver Aldemir Y, Ant Bursalı E, Yurdakoç M. Manyetik özellikli desteklenmiş heterojen katalizörlerin hazırlanması ve karakterizasyonu. DEUFMD. 2021;23(67):137-46.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.