Zemin ve Deprem Parametrelerinden İvme Azalım İlişkisi
Yıl 2021,
, 575 - 593, 24.05.2021
Osman Uyanık
,
Nevbahar Ekin
,
Onur Çoşkun
Öz
Bu çalışmada, mühendislik yapıları için önemli bir parametre olan ve depremde meydana gelen pik yatay yer ivme değeri tahmin edilmiştir. Yatay yer ivme değeri konusunda çalışan araştırmacıların çoğunluğu sadece deprem parametrelerini, çok azı ise zemin parametrelerinden bazılarını deneysel ilişkilerinde kullanmışlardır. Bilindiği üzere pik yatay yer ivme değeri yerin özelliklerine bağlı değişkenlik göstermektedir. Bu nedenle yapılan çalışmada hem zeminin dinamik parametrelerini hem de deprem parametrelerini kullanarak çok parametreli yeni bir ivme azalım ilişkisi elde edilmiştir. Bu ilişkide deprem parametreleri olarak depremin büyüklüğü, periyodu ve kaynak mesafesi ve zeminin dinamik parametreleri olarak da zeminin büyütmesi, hakim titreşim periyodu, 30m derinlik için P ve S dalga hızlarının ağırlıklı ortalamaları (Vp30 ve Vs30) kullanılmıştır. Bu kapsamda, dünyadaki farklı istasyonlardan elde edilen Mw=5.3-7.1 aralığındaki büyüklüklerde 152 adet deprem kaydının sonuçları ve istasyon yerinin dinamik parametrelerinden elde edilen verilerle veri seti oluşturulmuştur. Çalışma kapsamında geliştirilen deneysel azalım ilişkisi, literatürdeki diğer araştırmacıların deneysel ilişkileri ile karşılaştırılmış ve daha düşük RMSE hata elde edilmiştir.
Teşekkür
Bu çalışmada kullanılan verilerin birçoğu Afet ve Acil Durum Yönetimi Başkanlığı, Deprem Dairesi’nden (AFAD) sağlanmıştır. Yazarlar; AFAD deprem dairesi yönetimine ve Yük. Jeofizik Müh. Erkan Ateş’e teşekkür ederler.
Kaynakça
- [1] Kanai, K. 1961. An empirical formula for the spectrum of strong earthquake motions, Bulletin of Earthquake Research Institute, Cilt. 39, s. 85-95.
- [2] Denham, D., Small, G.R., Everingham, I.B. 1973. Some strong-motion results from Papua New Guinea 1967-1972, In Proceedings of Fifth World Conference on Earthquake Engineering, Cilt. 2, s. 2324-2327.
- [3] Ambraseys, N. 1975. Trends in engineering seismology in Europe, In Proceedings of Fifth European Conference on Earthquake Engineering, Cilt. 3, s. 39-52.
- [4] Blume, A. 1977. The SAM procedure for site-acceleration-magnitude relationships, In Proceedings of Sixth World Conference on Earthquake Engineering, Cilt. 1, s. 416-422.
- [5] Cornell, C.A., Banon, H., Shakal, A.F. 1979. Seismic motion and response prediction alternatives, Earthquake Engineering and Structural Dynamics, Cilt. 7(4), s. 295-315.
- [6] Gaull, B.A. 1988. Attenuation of strong ground motion in space and time in southwest western Australia, In Proceedings of Ninth World Conference on Earthquake Engineering, Cilt. 2, s. 361-366.
- [7] Marin, S., Avouac, J.P., Nicolas, M., Schlupp, A. 2004. A probabilistic approach to seismic hazard in metropolitan France, Bulletin of the Seismological Society of America, Cilt. 94(6), s. 2137-2163.
- [8] Zuccolo, E., Bozzoni, F., Lai, C.G. 2017. Regional low-magnitude GMPE to estimate spectral accelerations for earthquake early warning applications in southern Italy, Seismological Research Letters, Cilt. 88(1), s. 61-71.
- [9] Idriss, I.M. 1978. Characteristics of earthquake ground motions, In Proceedings of the ASCE Geotechnical Engineering Division Speciality Conference: Earthquake Engineering and Soil Dynamics, Cilt. 3, s. 1151-1265.
- [10] Algermissen, T., Hansen, S.L., Thenhaus, P.C. 1988. Seismic hazard evaluation for El Salvador. Report for the US Agency for International Development, Technical report no: 2-17, 21.
- [11] Castillo, W.T., Lopez, P.S., Dahle, A., Bungum, H. 1992. Digitization of strong motion data and estimation of PGA attenuation. Technical report no: 2-4, NORSAR, Kjeller, Norway, Reduction of Natural Disasters in central America Earthquake Preparedness and Hazard Mitigation Seismic Zonation and Earthquake Hazard Assessment.
- [12] Wang, B.Q., Wu, F.T., Bian, Y.J. 1999. Attenuation characteristics of peak acceleration in north China and comparison with those in the eastern part of North America, Acta Seismologica Sinica, Cilt. 12(1), s. 26-34.
- [13] Aydan, Ö. 2001. İstanbul Boğazı denizaltı geçişi için tüp tünel ile kalkan tünelin uygunluğunun karşılaştırılması, Jeoloji Mühendisliği Dergisi, Cilt. 25(1), s. 1-17.
- [14] Sanchez, A.R., Jara, J.M. 2003. Estimación del peligro sísmico de Morelia, Ciencia Nicolaita, Cilt. 29, s. 63-76.
- [15] Shi, S., Shen, J. 2003. A study on attenuation relations of strong earth movements in Shanghai and its adjacent area, Earthquake Research in China, Chinese, Cilt. 19, s. 315-323.
- [16] Cui, J.W., Zhang, J.G., Gao, D., Duan, J.X., Wang, T. 2012. The ground motion attenuation relation for the mountainous area in Sichuan and Yunnan. In Proceedings of Fifteenth World Conference on Earthquake Engineering, 149, Lisbon, Portugal.
- [17] Youngs, R., Day, S.M., Stevens, J.L. 1988. Near-eld ground motions on rock for large subduction earthquakes. In Proceedings of Earthquake Engineering & Soil Dynamics II, Geotechnical Division, ASCE, 445-462, Park City, Utah.
- [18] Lungu, D., Demetriu, S., Radu, C., Coman, O. 1994. Uniform hazard response spectra for Vrancea earthquakes in Romania. In Proceedings of Tenth European Conference on Earthquake Engineering, 1, 365-370, Vienna, Austria.
- [19] Iglesias, A., Singh, S.K., Pacheco, J.F., Ordaz, M. 2002. A source and wave propagation study of the Copalillo, Mexico, earthquake of 21 July 2000 (Mw=5.9): Implications for seismic hazard in Mexico City from inslab earthquakes, Bulletin of the Seismological Society of America, Cilt. 92(3), s. 1060-1071.
- [20] Popescu, E., Cioan, C.O., Radulian, M., Placinta, A.O., Moldovan, I. A. 2007. Attenuation relations for the seismic ground motion induced by Vrancea intermediate-depth earthquakes. In International Symposium on Strong Vrancea Earthquakes and Risk Mitigation, 4-6 October 2007, Bucharest, Romania.
- [21] García-Soto, A.D., Jaimes, M.A. 2017. Ground-motion prediction model for vertical response spectra from Mexican interplate earthquakes, Bulletin of the Seismological Society of America, Cilt. 107(2), s. 887-900.
- [22] Konovalov, A.V., Manaychev, K.A., Stepnov, A.A., Gavrilov, A.V. 2019. Regional ground motion prediction equation for Sakhalin island, Seismic Instruments, Cilt. 55(1), s. 70-77.
- [23] Kumar, P., Chamoli, B.P., Kumar, A., Gairola, A. 2019. Attenuation relationship for peak horizontal acceleration of strong ground motion of Uttarakhand region of central Himalayas, Journal of Earthquake Engineering, Cilt. 23, 1634161.
- [24] Dahle, A., Climent, A., Taylor, W., Bungum, H., Santos, P., Ciudad Real, M., Linholm, C., Strauch, W., Segura, F. 1995. New spectral strong motion attenuation models for Central America, In Proceedings of the Fifth International Conference on Seismic Zonation, Cilt. 2, s. 1005-1012.
- [25] Iervolino, I., Giorgio, M., Galasso, C., Manfredi, G. 2010. Conditional hazard maps for secondary intensity measures, Bulletin of the Seismological Society of America, Cilt. 100(6), s. 3312-3319.
- [26] Kanai, K. 1966. Improved empirical formula for characteristics of stray [sic] earthquake motions. In Proceedings of the Japan Earthquake Engineering Symposium, 1-4, Tokyo-Japan.
- [27] Ambraseys, N., Simpson, K.A., Bommer, J.J. 1996. Prediction of horizontal response spectra in Europe, Earthquake Engineering and Structural Dynamics, Cilt. 25(4), s. 371-400.
- [28] Field, E.H. 2000. A modified ground-motion attenuation relationship for southern California that accounts for detailed site classification and a basin-depth effect, Bulletin of the Seismological Society of America, Cilt. 90(6B), s. S209-S221.
- [29] Gençoğlu A, Sayıl N. 2019. Kuzey Anadolu Fay Zonu’nun (KAFZ) Orta Kesim İçin Yeni Bir Kuvvetli Yer Hareketi Azalım İlişkisi, Turkish Journal of Earthquake Research, Cilt. 1(1), s. 1-14.
- [30] Boore, D.M., Joyner, W.B., Fumal, T.E. 1994. Estimation of response spectra and peak accelerations from western North American earthquakes: An interim report. Geological Survey, Part 2, Open-File Report 94-127.
- [31] Chapman, M.C. 1999. On the use of elastic input energy for seismic hazard analysis, Earthquake Spectra, Cilt. 15(4), s. 607-635.
- [32] Zare, M., Ghafory-Ashtiany, M., Bard, P.Y. 1999. Attenuation law for the strong-motions in Iran, In Proceedings of the Third International Conference on Seismology and Earthquake Engineering, Cilt. 1, s. 345-354.
- [33] Ambraseys, N., Douglas, J. 2003. Near field horizontal and vertical earthquake ground motions, Soil Dynamics and Earthquake Engineering, Cilt. 23(1), s. 1-18.
- [34] Cauzzi, C., Faccioli, E. 2008. Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records, Journal of Seismology, Cilt. 12(4), s. 453-475, 2008.
- [35] Shoushtari, A.V., Adnan, A.Z., Zare, M. 2018. Ground motion prediction equations for distant subduction interface earthquakes based on empirical data in the Malay Peninsula and Japan, Soil Dynamics and Earthquake Engineering, Cilt. 109, s. 339-353.
- [36] Wen, R., Xu, P., Wang, H., Ren, Y. 2018. Single-station standard deviation using strong-motion data from Sichuan region, China, Bulletin of the Seismological Society of America, Cilt. 108(4), s. 2237-2247.
- [37] Seed, R.B., Dickenson, S.E., Reimer, M.F., Bray, J.D., Sitar, N., Mitchell, J.K., Idriss, I.M., Kayen, R.E., Kropp, A., Harder, L.F., Power, M.S. 1990. Preliminary report on the principal geotechnical aspect of the october 17, 1989 Loma prieta earthquake, Report UCB/EERC 90/05, Earthquake Engineering research Center, University of California, Berkeley, 137.
- [38] Ansal, A.M. 1994. Effect of geotechnical factors and behavior of soil layers during earthquakes. State of-the-Art Lecture, 10th European Conference on Earthquake Engineering, Balkema Publishers, 151-157, 28 August-2 September 1994, Vienna Austria.
- [39] Ansal, A.M., Lav, A.M. 1995. Geotechnical factors in 1992 Erzincan earthquake, 5 th Conference on Seismic Zonation, Nice, Cilt. 1, s. 667-674.
- [40] Ansal, A.M., Siyahi, B.G. 1995. Effects of coupling between source and site characteristics during earthquakes, European Seismic Design Practice, s. 83-89.
- [41] Uyanık, O., Türker, E., İsmailov, T. 2006. Sığ sismik mikro-bölgeleme ve Burdur/Türkiye örneği, Ekologiya ve Su Teserrüfatı, Elmi-Texniki ve istehsalat Jurnalı, Su Teserrüfatı ve Mühendis Kommunikasiya Sistemleri Fakultesi, Azerbaycan, Cilt. 1, s. 9-15.
- [42] Uyanık, O. 2015. Deprem Ağır Hasar Alanlarının Önceden Belirlenmesi ve Şehir Planlaması için Makro ve Mikro Bölgelendirmelerin Önemi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 19(2), s. 24-38.
- [43] Beliceli, A. 2006. Eskişehir Yerleşim Yeri Zeminin Büyütme Etkisinin Makaslama Dalga Hızına Bağlı Olarak Belirlenmesi. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 132s, Balıkesir.
- [44] Kramer, S.L. 1996, Geotechnical Earthquake Engineering, Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-374943-6.
- [45] Arıoğlu, E., Arıoğlu, B., Girgin, C. 2001. Doğu Marmara Depreminin Yer İvmesi Değerleri Açısından Değerlendirilmesi, Beton Prefabrikasyon Dergisi, Cilt. 57-58, s. 5-15.
- [46] Bowles, J.E. 1997. Foundation Analysis and Design, 5th edition, McGraw-Hill Companies, s. 1207.
- [47] Keçeli, A. 1990. Sismik yöntemlerle müsaade edilebilir dinamik zemin taşıma kapasitesi ve oturmasının saptanması, Jeofizik, Cilt. 4(2), s. 83-92.
- [48] Keçeli, A. 2000. Sismik yöntemle kabul edilebilir veya güvenli taşıma kapasitesi saptanması, Jeofizik, Cilt. 14(1-2), s. 61-72.
- [49] Stokoe, K.H., Darendeli, M.B., Andrus, R.D., Brown, L.T. 1999. Dynamic soil properties: laboratory, field and correlation studies, Proceeding of the 2nd International Conference on Earthquake Geotechnical Engineering, Cilt. 3, s. 811- 845.
- [50] Uyanık, O. 2010. Compressional and shear-wave velocity measurements in unconsolidated the top-soil and comparison of the results, International Journal of the Physical Sciences, Cilt. 5(7), s. 1034-1039.
- [51] Uyanık, O. 2011. The porosity of saturated shallow sediments from seismic compressional and shear wave velocities, Journal of Applied Geophysics, Cilt. 73(1), s. 16-24.
- [52] Uyanık, O. 2019. Estimation of the porosity of clay soils using seismic P and S wave velocities, Journal of Applied Geophysics, Cilt. 170, 103832.
- [53] Andrus, R.D., Stokoe, K.H. 2000. Liquefaction resistance of soils from shear-wave velocity, Journal of Geotechnical and Geoenvironmental Engineering ASCE, Cilt. 126(11), s. 1015-1025.
- [54] Uyanık, O. 2002. Kayma dalga hızına bağlı potansiyel sıvılaşma analiz yöntemi. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 190s, İzmir.
- [55] Uyanık, O. 2006. Sıvılaşır yada sıvılaşmaz zeminlerin yinelemeli gerilme oranına bir seçenek, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt. 8(2), s. 79-91.
- [56] Uyanık, O. 2020. Soil liquefaction analysis based on soil and earthquake parameters, Journal of Applied Geophysics, Cilt. 176, 104004.
- [57] Uyanık, O., Taktak, A.G. 2009. Kayma dalga hızı ve etkin titreşim periyodundan sıvılaşma çözümlemesi için yeni bir yöntem, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 13(1), s. 74-81.
- [58] Uyanık, O., Ekinci, B., Uyanık, N.A. 2013. Liquefaction analysis from seismic velocities and determination of lagoon limits Kumluca/Antalya example, Journal of Applied Geophysics, Cilt. 95, s. 90-103.
- [59] Çoşkun, O. 2020. Deprem Ve Zemin Parametrelerinden En Büyük Yatay Yer İvmesinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 62s, Isparta.
- [60] Heaton, T.H., Tajima, F., Mori, A.W. 1986. Estimating ground motions using recorded accelerograms, Survey in Geophysics, Cilt. 8, s. 25–83.
- [61] Xia, J., Miller, R.D., Park, C.B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, Cilt. 64 (3), s. 691-700.
- [62] Ateş, E., Uyanık, O. 2019. Jeofizik yöntemler ile yer ve yapı etkileşimi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 23, s. 46-60.
- [63] Uyanık, O., Çatlıoğlu, B. 2010. Determination of density from seismic velocities, The 19th International Geophysical Congress and Exhibition of Turkey, 23–26 November 2010, Ankara, Turkey.
- [64] Uyanık, O., Çatlıoğlu, B. 2015. Determination of density from seismic velocities. Jeofizik, Cilt. 17, s. 3–15.
- [65] IBM Corp. Released, 2011. IBM SPSS Statistics for Windows. Version 20.0. Armonk, NY: IBM Corp.
- [66] Ulutas, E., Ozer, M.F. 2010. Empirical attenuation relationship of peak ground acceleration for Eastern Marmara region in Turkey, Arabian Journal of Science and Engineering, Cilt. 35, s. 187−203.
- [67] Baag, C.E., Chang, S.J., Jo, N.D., Shin, J.S. 1998. Evaluation of seismic hazard in the southern part of Korea, In Proceedings of the Second International Symposium on Seismic Hazards and Ground Motion in the Region of Moderate Seismicity, s. 31-50.
- [68] Esteva, L. 1970. Seismic risk and seismic design. In R.J. Hansen, editor, Seismic Design for Nuclear Power Plants, The M.I.T. Press, 142-182.
- [69] Esteva, L., Villaverde, R. 1973. Seismic risk, design spectra and structural reliability, In Proceedings of Fifth World Conference on Earthquake Engineering, Cilt. 2, s. 2586-2596.
- [70] Joyner, W.B., Boore, D.M. 1988. Measurement, characterization and prediction of strong ground motion: Earthquake Engineering and Soil Dynamics, Recent Advences in Ground Motion Evaluation, Cilt. 2, s. 43-102.
- [71] Inan, E., Colakoglu, Z., Koc, N., Bayülke, N., Coruh, E. 1996. Earthquake catalogs with acceleration records from 1976 to 1996. Technical report, 98s, General Directorate of Disaster Aairs, Earthquake Research Department, Ankara, Turkey.
- [72] Ansal, A.M. 1997. İstanbul için tasarım deprem özelliklerinin belirlenmesi, In Proceedings of Prof. Dr. Rifat Yarar Symposium, Cilt. 1, s. 233-244.
- [73] Beyaz, T. 2004. Zemin Etkisinden Arındırılmış Deprem Kayıtlarına göre Türkiye için Yeni Bir Deprem Enerjisi Azalım Bağıntısının Geliştirilmesi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 271s, Ankara.
Attenuation Relationship for Peak Horizontal Acceleration from Ground and Earthquake Parameters
Yıl 2021,
, 575 - 593, 24.05.2021
Osman Uyanık
,
Nevbahar Ekin
,
Onur Çoşkun
Öz
In this study, the value of the peak horizontal ground acceleration occurred in the earthquake and which is an important parameter for the engineering structures was estimated. Most of the researchers working on the peak horizontal ground acceleration value subject used only earthquake parameters and few used ground parameters in their empirical relationships. As known, the value of the peak horizontal ground acceleration varies depending on the properties of the ground. Therefore, a new multi-parameters attenuation relationship for peak horizontal acceleration was obtained by using both the dynamic parameters of the soil and the earthquake parameters. In this relationship, magnitude, period and source distance of the earthquake are used as earthquake parameters, and soil magnification, soil predominant period, weighted averages of P and S wave velocities for 30m depth (Vp30 and Vs30) are used as dynamic parameters of the ground. In this context, the data obtained from dynamic parameters of station ground and from results of 152 earthquake records of Mw=5.3-7.1 magnitudes obtained from different stations in the world were formed as data set. The empirical attenuation relationship developed within the scope of the study was compared with that of other researchers in the literature and a lower RMSE error was obtained.
Kaynakça
- [1] Kanai, K. 1961. An empirical formula for the spectrum of strong earthquake motions, Bulletin of Earthquake Research Institute, Cilt. 39, s. 85-95.
- [2] Denham, D., Small, G.R., Everingham, I.B. 1973. Some strong-motion results from Papua New Guinea 1967-1972, In Proceedings of Fifth World Conference on Earthquake Engineering, Cilt. 2, s. 2324-2327.
- [3] Ambraseys, N. 1975. Trends in engineering seismology in Europe, In Proceedings of Fifth European Conference on Earthquake Engineering, Cilt. 3, s. 39-52.
- [4] Blume, A. 1977. The SAM procedure for site-acceleration-magnitude relationships, In Proceedings of Sixth World Conference on Earthquake Engineering, Cilt. 1, s. 416-422.
- [5] Cornell, C.A., Banon, H., Shakal, A.F. 1979. Seismic motion and response prediction alternatives, Earthquake Engineering and Structural Dynamics, Cilt. 7(4), s. 295-315.
- [6] Gaull, B.A. 1988. Attenuation of strong ground motion in space and time in southwest western Australia, In Proceedings of Ninth World Conference on Earthquake Engineering, Cilt. 2, s. 361-366.
- [7] Marin, S., Avouac, J.P., Nicolas, M., Schlupp, A. 2004. A probabilistic approach to seismic hazard in metropolitan France, Bulletin of the Seismological Society of America, Cilt. 94(6), s. 2137-2163.
- [8] Zuccolo, E., Bozzoni, F., Lai, C.G. 2017. Regional low-magnitude GMPE to estimate spectral accelerations for earthquake early warning applications in southern Italy, Seismological Research Letters, Cilt. 88(1), s. 61-71.
- [9] Idriss, I.M. 1978. Characteristics of earthquake ground motions, In Proceedings of the ASCE Geotechnical Engineering Division Speciality Conference: Earthquake Engineering and Soil Dynamics, Cilt. 3, s. 1151-1265.
- [10] Algermissen, T., Hansen, S.L., Thenhaus, P.C. 1988. Seismic hazard evaluation for El Salvador. Report for the US Agency for International Development, Technical report no: 2-17, 21.
- [11] Castillo, W.T., Lopez, P.S., Dahle, A., Bungum, H. 1992. Digitization of strong motion data and estimation of PGA attenuation. Technical report no: 2-4, NORSAR, Kjeller, Norway, Reduction of Natural Disasters in central America Earthquake Preparedness and Hazard Mitigation Seismic Zonation and Earthquake Hazard Assessment.
- [12] Wang, B.Q., Wu, F.T., Bian, Y.J. 1999. Attenuation characteristics of peak acceleration in north China and comparison with those in the eastern part of North America, Acta Seismologica Sinica, Cilt. 12(1), s. 26-34.
- [13] Aydan, Ö. 2001. İstanbul Boğazı denizaltı geçişi için tüp tünel ile kalkan tünelin uygunluğunun karşılaştırılması, Jeoloji Mühendisliği Dergisi, Cilt. 25(1), s. 1-17.
- [14] Sanchez, A.R., Jara, J.M. 2003. Estimación del peligro sísmico de Morelia, Ciencia Nicolaita, Cilt. 29, s. 63-76.
- [15] Shi, S., Shen, J. 2003. A study on attenuation relations of strong earth movements in Shanghai and its adjacent area, Earthquake Research in China, Chinese, Cilt. 19, s. 315-323.
- [16] Cui, J.W., Zhang, J.G., Gao, D., Duan, J.X., Wang, T. 2012. The ground motion attenuation relation for the mountainous area in Sichuan and Yunnan. In Proceedings of Fifteenth World Conference on Earthquake Engineering, 149, Lisbon, Portugal.
- [17] Youngs, R., Day, S.M., Stevens, J.L. 1988. Near-eld ground motions on rock for large subduction earthquakes. In Proceedings of Earthquake Engineering & Soil Dynamics II, Geotechnical Division, ASCE, 445-462, Park City, Utah.
- [18] Lungu, D., Demetriu, S., Radu, C., Coman, O. 1994. Uniform hazard response spectra for Vrancea earthquakes in Romania. In Proceedings of Tenth European Conference on Earthquake Engineering, 1, 365-370, Vienna, Austria.
- [19] Iglesias, A., Singh, S.K., Pacheco, J.F., Ordaz, M. 2002. A source and wave propagation study of the Copalillo, Mexico, earthquake of 21 July 2000 (Mw=5.9): Implications for seismic hazard in Mexico City from inslab earthquakes, Bulletin of the Seismological Society of America, Cilt. 92(3), s. 1060-1071.
- [20] Popescu, E., Cioan, C.O., Radulian, M., Placinta, A.O., Moldovan, I. A. 2007. Attenuation relations for the seismic ground motion induced by Vrancea intermediate-depth earthquakes. In International Symposium on Strong Vrancea Earthquakes and Risk Mitigation, 4-6 October 2007, Bucharest, Romania.
- [21] García-Soto, A.D., Jaimes, M.A. 2017. Ground-motion prediction model for vertical response spectra from Mexican interplate earthquakes, Bulletin of the Seismological Society of America, Cilt. 107(2), s. 887-900.
- [22] Konovalov, A.V., Manaychev, K.A., Stepnov, A.A., Gavrilov, A.V. 2019. Regional ground motion prediction equation for Sakhalin island, Seismic Instruments, Cilt. 55(1), s. 70-77.
- [23] Kumar, P., Chamoli, B.P., Kumar, A., Gairola, A. 2019. Attenuation relationship for peak horizontal acceleration of strong ground motion of Uttarakhand region of central Himalayas, Journal of Earthquake Engineering, Cilt. 23, 1634161.
- [24] Dahle, A., Climent, A., Taylor, W., Bungum, H., Santos, P., Ciudad Real, M., Linholm, C., Strauch, W., Segura, F. 1995. New spectral strong motion attenuation models for Central America, In Proceedings of the Fifth International Conference on Seismic Zonation, Cilt. 2, s. 1005-1012.
- [25] Iervolino, I., Giorgio, M., Galasso, C., Manfredi, G. 2010. Conditional hazard maps for secondary intensity measures, Bulletin of the Seismological Society of America, Cilt. 100(6), s. 3312-3319.
- [26] Kanai, K. 1966. Improved empirical formula for characteristics of stray [sic] earthquake motions. In Proceedings of the Japan Earthquake Engineering Symposium, 1-4, Tokyo-Japan.
- [27] Ambraseys, N., Simpson, K.A., Bommer, J.J. 1996. Prediction of horizontal response spectra in Europe, Earthquake Engineering and Structural Dynamics, Cilt. 25(4), s. 371-400.
- [28] Field, E.H. 2000. A modified ground-motion attenuation relationship for southern California that accounts for detailed site classification and a basin-depth effect, Bulletin of the Seismological Society of America, Cilt. 90(6B), s. S209-S221.
- [29] Gençoğlu A, Sayıl N. 2019. Kuzey Anadolu Fay Zonu’nun (KAFZ) Orta Kesim İçin Yeni Bir Kuvvetli Yer Hareketi Azalım İlişkisi, Turkish Journal of Earthquake Research, Cilt. 1(1), s. 1-14.
- [30] Boore, D.M., Joyner, W.B., Fumal, T.E. 1994. Estimation of response spectra and peak accelerations from western North American earthquakes: An interim report. Geological Survey, Part 2, Open-File Report 94-127.
- [31] Chapman, M.C. 1999. On the use of elastic input energy for seismic hazard analysis, Earthquake Spectra, Cilt. 15(4), s. 607-635.
- [32] Zare, M., Ghafory-Ashtiany, M., Bard, P.Y. 1999. Attenuation law for the strong-motions in Iran, In Proceedings of the Third International Conference on Seismology and Earthquake Engineering, Cilt. 1, s. 345-354.
- [33] Ambraseys, N., Douglas, J. 2003. Near field horizontal and vertical earthquake ground motions, Soil Dynamics and Earthquake Engineering, Cilt. 23(1), s. 1-18.
- [34] Cauzzi, C., Faccioli, E. 2008. Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records, Journal of Seismology, Cilt. 12(4), s. 453-475, 2008.
- [35] Shoushtari, A.V., Adnan, A.Z., Zare, M. 2018. Ground motion prediction equations for distant subduction interface earthquakes based on empirical data in the Malay Peninsula and Japan, Soil Dynamics and Earthquake Engineering, Cilt. 109, s. 339-353.
- [36] Wen, R., Xu, P., Wang, H., Ren, Y. 2018. Single-station standard deviation using strong-motion data from Sichuan region, China, Bulletin of the Seismological Society of America, Cilt. 108(4), s. 2237-2247.
- [37] Seed, R.B., Dickenson, S.E., Reimer, M.F., Bray, J.D., Sitar, N., Mitchell, J.K., Idriss, I.M., Kayen, R.E., Kropp, A., Harder, L.F., Power, M.S. 1990. Preliminary report on the principal geotechnical aspect of the october 17, 1989 Loma prieta earthquake, Report UCB/EERC 90/05, Earthquake Engineering research Center, University of California, Berkeley, 137.
- [38] Ansal, A.M. 1994. Effect of geotechnical factors and behavior of soil layers during earthquakes. State of-the-Art Lecture, 10th European Conference on Earthquake Engineering, Balkema Publishers, 151-157, 28 August-2 September 1994, Vienna Austria.
- [39] Ansal, A.M., Lav, A.M. 1995. Geotechnical factors in 1992 Erzincan earthquake, 5 th Conference on Seismic Zonation, Nice, Cilt. 1, s. 667-674.
- [40] Ansal, A.M., Siyahi, B.G. 1995. Effects of coupling between source and site characteristics during earthquakes, European Seismic Design Practice, s. 83-89.
- [41] Uyanık, O., Türker, E., İsmailov, T. 2006. Sığ sismik mikro-bölgeleme ve Burdur/Türkiye örneği, Ekologiya ve Su Teserrüfatı, Elmi-Texniki ve istehsalat Jurnalı, Su Teserrüfatı ve Mühendis Kommunikasiya Sistemleri Fakultesi, Azerbaycan, Cilt. 1, s. 9-15.
- [42] Uyanık, O. 2015. Deprem Ağır Hasar Alanlarının Önceden Belirlenmesi ve Şehir Planlaması için Makro ve Mikro Bölgelendirmelerin Önemi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 19(2), s. 24-38.
- [43] Beliceli, A. 2006. Eskişehir Yerleşim Yeri Zeminin Büyütme Etkisinin Makaslama Dalga Hızına Bağlı Olarak Belirlenmesi. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 132s, Balıkesir.
- [44] Kramer, S.L. 1996, Geotechnical Earthquake Engineering, Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN 0-13-374943-6.
- [45] Arıoğlu, E., Arıoğlu, B., Girgin, C. 2001. Doğu Marmara Depreminin Yer İvmesi Değerleri Açısından Değerlendirilmesi, Beton Prefabrikasyon Dergisi, Cilt. 57-58, s. 5-15.
- [46] Bowles, J.E. 1997. Foundation Analysis and Design, 5th edition, McGraw-Hill Companies, s. 1207.
- [47] Keçeli, A. 1990. Sismik yöntemlerle müsaade edilebilir dinamik zemin taşıma kapasitesi ve oturmasının saptanması, Jeofizik, Cilt. 4(2), s. 83-92.
- [48] Keçeli, A. 2000. Sismik yöntemle kabul edilebilir veya güvenli taşıma kapasitesi saptanması, Jeofizik, Cilt. 14(1-2), s. 61-72.
- [49] Stokoe, K.H., Darendeli, M.B., Andrus, R.D., Brown, L.T. 1999. Dynamic soil properties: laboratory, field and correlation studies, Proceeding of the 2nd International Conference on Earthquake Geotechnical Engineering, Cilt. 3, s. 811- 845.
- [50] Uyanık, O. 2010. Compressional and shear-wave velocity measurements in unconsolidated the top-soil and comparison of the results, International Journal of the Physical Sciences, Cilt. 5(7), s. 1034-1039.
- [51] Uyanık, O. 2011. The porosity of saturated shallow sediments from seismic compressional and shear wave velocities, Journal of Applied Geophysics, Cilt. 73(1), s. 16-24.
- [52] Uyanık, O. 2019. Estimation of the porosity of clay soils using seismic P and S wave velocities, Journal of Applied Geophysics, Cilt. 170, 103832.
- [53] Andrus, R.D., Stokoe, K.H. 2000. Liquefaction resistance of soils from shear-wave velocity, Journal of Geotechnical and Geoenvironmental Engineering ASCE, Cilt. 126(11), s. 1015-1025.
- [54] Uyanık, O. 2002. Kayma dalga hızına bağlı potansiyel sıvılaşma analiz yöntemi. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 190s, İzmir.
- [55] Uyanık, O. 2006. Sıvılaşır yada sıvılaşmaz zeminlerin yinelemeli gerilme oranına bir seçenek, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt. 8(2), s. 79-91.
- [56] Uyanık, O. 2020. Soil liquefaction analysis based on soil and earthquake parameters, Journal of Applied Geophysics, Cilt. 176, 104004.
- [57] Uyanık, O., Taktak, A.G. 2009. Kayma dalga hızı ve etkin titreşim periyodundan sıvılaşma çözümlemesi için yeni bir yöntem, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 13(1), s. 74-81.
- [58] Uyanık, O., Ekinci, B., Uyanık, N.A. 2013. Liquefaction analysis from seismic velocities and determination of lagoon limits Kumluca/Antalya example, Journal of Applied Geophysics, Cilt. 95, s. 90-103.
- [59] Çoşkun, O. 2020. Deprem Ve Zemin Parametrelerinden En Büyük Yatay Yer İvmesinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 62s, Isparta.
- [60] Heaton, T.H., Tajima, F., Mori, A.W. 1986. Estimating ground motions using recorded accelerograms, Survey in Geophysics, Cilt. 8, s. 25–83.
- [61] Xia, J., Miller, R.D., Park, C.B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, Cilt. 64 (3), s. 691-700.
- [62] Ateş, E., Uyanık, O. 2019. Jeofizik yöntemler ile yer ve yapı etkileşimi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 23, s. 46-60.
- [63] Uyanık, O., Çatlıoğlu, B. 2010. Determination of density from seismic velocities, The 19th International Geophysical Congress and Exhibition of Turkey, 23–26 November 2010, Ankara, Turkey.
- [64] Uyanık, O., Çatlıoğlu, B. 2015. Determination of density from seismic velocities. Jeofizik, Cilt. 17, s. 3–15.
- [65] IBM Corp. Released, 2011. IBM SPSS Statistics for Windows. Version 20.0. Armonk, NY: IBM Corp.
- [66] Ulutas, E., Ozer, M.F. 2010. Empirical attenuation relationship of peak ground acceleration for Eastern Marmara region in Turkey, Arabian Journal of Science and Engineering, Cilt. 35, s. 187−203.
- [67] Baag, C.E., Chang, S.J., Jo, N.D., Shin, J.S. 1998. Evaluation of seismic hazard in the southern part of Korea, In Proceedings of the Second International Symposium on Seismic Hazards and Ground Motion in the Region of Moderate Seismicity, s. 31-50.
- [68] Esteva, L. 1970. Seismic risk and seismic design. In R.J. Hansen, editor, Seismic Design for Nuclear Power Plants, The M.I.T. Press, 142-182.
- [69] Esteva, L., Villaverde, R. 1973. Seismic risk, design spectra and structural reliability, In Proceedings of Fifth World Conference on Earthquake Engineering, Cilt. 2, s. 2586-2596.
- [70] Joyner, W.B., Boore, D.M. 1988. Measurement, characterization and prediction of strong ground motion: Earthquake Engineering and Soil Dynamics, Recent Advences in Ground Motion Evaluation, Cilt. 2, s. 43-102.
- [71] Inan, E., Colakoglu, Z., Koc, N., Bayülke, N., Coruh, E. 1996. Earthquake catalogs with acceleration records from 1976 to 1996. Technical report, 98s, General Directorate of Disaster Aairs, Earthquake Research Department, Ankara, Turkey.
- [72] Ansal, A.M. 1997. İstanbul için tasarım deprem özelliklerinin belirlenmesi, In Proceedings of Prof. Dr. Rifat Yarar Symposium, Cilt. 1, s. 233-244.
- [73] Beyaz, T. 2004. Zemin Etkisinden Arındırılmış Deprem Kayıtlarına göre Türkiye için Yeni Bir Deprem Enerjisi Azalım Bağıntısının Geliştirilmesi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 271s, Ankara.