Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Strength Reduction Factor for Axially-Loaded Circular Columns with Fiber Reinforced Polymer

Yıl 2021, , 995 - 1004, 15.09.2021
https://doi.org/10.21205/deufmd.2021236925

Öz

The code and regulations use strength reduction factors to take into account the uncertainties of the random variables considered in structural design. In this study, for plain concrete columns and reinforced concrete columns (tie-reinforced column) wrapped with carbon fiber polymer (CFRP) under axial load obtained from literature, the strength reduction factors (ϕ) were calculated according to second-order moment approach by taking into account the target reliability index (β) and, different coefficient of variation of random variables of performance function [1]. In the calculations, the target reliability index was taken β=3.5 and the corresponding probability of failure as p_F=2.33〖*10〗^(-4). In ACI 318-19, the strength reduction factors for plain column and tie-reinforced column under axial load are 0.60 and 0.65, respectively. As a result of study, the strength reduction factors recommended in the ACI 318-19 for columns reinforced with fiber polymer were compared with the strength reduction factors obtained for different coefficient of variation.

Kaynakça

  • [1] Tarawneh A., Sereen Majdalaweyh S., (2020). Design and reliability analysis of FRP-reinforced concrete columns, Structures, Cilt 28, s.1580-1588. DOI:10.1016/j.istruc.2020.10.009
  • [2] Xiao Y., Wu H., 2000. Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets, Journal of Materials in Civil Engineering, Cilt. 12(2), s. 139-146. DOI: 10.1061/(ASCE)0899-1561(2000)12:2(139)
  • [3] Zou Y., Hong H.P., 2008. Reliability Assessment of FRP-Confined Columns Designed for Buildings, Structure and Infrastructure Engineering, Cilt. 7(3), s. 243-258. DOI: 10.1080/15732470802416998
  • [4] Alqam M., Bennett R.M., Zureick A-H. 2004. Probabilistic Based Design of Concentrically Loaded Fiber-Reinforced Polymeric Compression Members, Journal of Structural Engineering, Cilt. 130(12), s. 1914-1920. DOI: 10.1061/(ASCE)0733-9445(2004)130:12(1914)
  • [5] Yingwu Z., Feng X., Lili S. (2013). Reliability Assessments of Concrete Filled FRP Tube Columns, Applied Mechanics and Materials, Cilt 405-408, s.731-734. DOI: 10.4028/www.scientific.net/AMM.405-408.731
  • [6] Mirza S.A. 1996. Reliability-Based Design of Reinforced Concrete Columns, Structural Safety, Cilt. 18(2), s. 179-194. DOI: 10.1016/0167-4730(96)00010-0
  • [7] Arslan, G., Alacalı, S. N., Sağıroğlu, A. 2015. The Investigation of the Strength Reduction Factor in Predicting the Shear Strength, Journal of Theoretical and Applied Mechanics (JTAM), Cilt. 53(2), s. 371-381. DOI: 10.15632/jtam-pl.53.2.371
  • [8] Arslan, G., Alacalı, S., Sağıroğlu, A. 2016. Assessing Reduction in Concrete Shear Strength Contribution, Proceedings of the Institution of Civil Engineers - Structures and Building, Cilt. 169(4),s. 237-244. DOI: 10.1680/jstbu.14.00102
  • [9] Alacalı, S., Arslan, G., 2018. Assessment of the Strength Reduction Factor in Predicting the Flexural Strength, Journal of Theoretical and Applied Mechanics, Cilt. 56(4) s. 1043-1053. DOI: 10.15632/jtam-pl.56.4.1043
  • [10] American Concrete Institute Committee 318 (ACI318), 2005. Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary, Farmington Hills, MI
  • [11] American Concrete Institute Committee 318 (ACI318), 2014. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, Farmington Hills, MI
  • [12] American Concrete Institute Committee 318 (ACI318), 2019. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, Farmington Hills, MI
  • [13] American Concrete Institute Committee 440 (440.2R-17), 2017. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, Farmington Hills, MI
  • [14] Ang A.H.S., Tang W.H., 1984. Probability Concepts in Engineering Planning and Design, Cilt. 2-Decision, Risk and Reliability, Wiley, NY
  • [15] Hao H., Li Z.X., Shi Y. 2015. Reliability Analysis of RC Columns and Frame with FRP Strengthening Subjected to Explosive Loads, Journal of Performance of Constructed Facilities, 04015017, DOI: 10.1061/(ASCE)CF.1943-5509.0000748
  • [16] Ali O. 2017. Structural Reliability of Biaxial Loaded Short/Slender-Square FRP-Confined RC Columns, Construction and Building Materials, Cilt. 151, s. 370-382. DOI: 10.1016/ j.conbuildmat.2017.06.032
  • [17] Jafari F. 2014. Reliability of FRP Reinforced Concrete Columns, 1. Persian Gulf International Conference on Sustainable Concrete, 17-18 December, Bandar Abbas
  • [18] Val D., Bljuger F., Yankelevsky D. 1997. Reliability Evaluation in Nonlinear Analysis of Reinforced Concrete Structures, Structural Safety, Cilt. 19, s. 203-217. DOI: 10.1016/S0167-4730(96)00025-2
  • [19] Atadero R.A., Karbhari V. M. 2007. Calibration of Resistance Factors for Reliability Based Design of Externally Bonded FRP Composites, Composites: Part B, Cilt. 39, s. 665-679. DOI: 10.1016/j.compositesb.2007.06.004
  • [20] Hong H.P., Zhou W. 1999. Reliability Evaluation of RC Columns, Journal of Structural Engineering, Cilt. 125(7), s. 784-790. DOI: 10.1061/(ASCE)0733-9445(1999)125:7(784)
  • [21] Monti G., Santini S. 2002. Reliability Based Calibration of Partial Safety Coefficient for Fiber-Reinforced Plastic, Journal of Composites for Construction, Cilt. 6(3), s. 162-167. DOI: 10.1061/(ASCE)1090-0268(2002)6:3(162)
  • [22] Kim J.H., Lee S.H., Paik I., Lee H.S. 2015. Reliability Assessment of Reinforced Concrete Columns Based on the P-M Interaction Diagram Using AFOSM, Structural Safety, Cilt. 55, s. 70-79. DOI: 10.1016/j.strusafe.2015.03.003
  • [23] Val D.V. 2003. Reliability of Fiber-Reinforced Polymer-Confined Reinforced Concrete Columns, Journal of Structural Engineering, Cilt. 129(8), s. 1122-1130. DOI: 10.1061/(ASCE)0733-9445(2003)129:8(1122)
  • [24] Taki A., Firouzi A., Mohammadzadeh S. 2018. Life Cycle Reliability Assessment of Reinforced Concrete Beams Shear-Strengthened with Carbon Fiber Reinforced Polymer Strips in Accordance with Fib Bulletin 14, Structural Concrete, Cilt. 19(6), s. 2017-2028. DOI: 10.1002/suco.201700289
  • [25] Wieghaus K.T., Atadero R.A. 2011. Effect of Existing Structure and FRP Uncertainties on the reliability of FRP-Based Repair, Journal of Composites for Construction, Cilt. 15(4), s. 635-643. DOI: 10.1061/(ASCE)CC. 1943-5614.0000197
  • [26] Okeil A.M., El-Tawil S., Shahawy M. 2002. Flexural Reliability of Reinforced Concrete Bridge Girders Strengthened with Carbon Fiber-Reinforced Polymer Laminates, Journal of Bridge Engineering, Cilt. 7(5), s. 290-299. DOI: 10.1061/(ASCE)1084-0702(2002)7:5(290)
  • [27] Ruiz S.E., Aguilar J.C. 1994. Reliability of Short and Slender Reinforced-Concrete Columns, Journal of Structural Engineering, Cilt. 120, DOI:10.1061/(ASCE)0733-9445(1994)120:6(1850)
  • [28] Jiang Y., Yang W. 2012. An Approach Based on Theorem of Total Probability for Reliability Analysis of RC Columns with Random Eccentricity, Structural Safety, Cilt. 41, s. 37-46. DOI: 10.1016/j.strusafe.2012.11.001
  • [29] Chastre C., Silva M.A.G., 2010. Monotonic Axial Behavior and Modelling of RC Circular Columns Confined with CFRP, Engineering Structures, Cilt. 32, s. 2268-2277. DOI: 10.1016/j.engstruct.2010.04.001
  • [30] Benzaid R., Mesbah H.A., 2014. The Confinement of Concrete in Compression Using CFRP Composites-effective Design Equations, Journal of Civil Engineering and Management, Cilt. 20(5), s. 632-648. DOI: 10.3846/13923730.2013.801911
  • [31] Faustino P., Chastre C., Paula R., 2013. Design Model for Square RC Columns under Compression Confined with CFRP, Composites: Part B, Cilt. 57, s. 187-198. DOI: 10.1016/j.compositesb.2013.09.052
  • [32] Peker Ö., 2005, Düşük Dayanımlı Betonarme Elemanların CFRP ile Güçlendirilmesi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul
  • [33] Lin C.T., Li Y.F., 2003. An Effective Peak Stress Formula for Concrete Confined with Carbon Fiber Reinforced Plastics, Canadian Journal of Civil Engineering, Cilt. 30, s. 882-889. DOI: 10.1139/L03-047
  • [34] Karabinis A.I., Rousakis T.C., 2002. Concrete Confined by FRP Material: a plasticity approach, Engineering Structures, Cilt. 24, s. 923-932. DOI: 10.1016/S0141-0296(02)00011-1

Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi

Yıl 2021, , 995 - 1004, 15.09.2021
https://doi.org/10.21205/deufmd.2021236925

Öz

Yönetmeliklerde, yapısal tasarımda göz önüne alınan rasgele değişkenlerin belirsizliklerini hesaba katmak için dayanım azaltma katsayıları kullanılır. Bu amaçla, çalışma kapsamında literatürden elde edilen karbon lifli polimer (CFRP) ile sargılı, boyuna ve enine donatılı (dairesel etriye) ve donatısız eksenel yük etkisindeki kolon numuneleri için, hedef güvenilirlik indeksi (β) ve performans fonksiyonunu oluşturan rasgele değişkenlere ilişkin farklı varyasyon katsayıları göz önüne alınarak ikinci moment yaklaşımına göre dayanım azaltma katsayıları (ϕ) hesaplanmıştır [1]. Hesaplamalarda, β=3.5 ve buna karşılık gelen göçme olasılığı değeri p_F=2.33〖*10〗^(-4) olarak alınmıştır. ACI 318-19 yönetmeliğinde, eksenel yük etkisindeki donatısız kolonlar ve etriyeli kolonlar için dayanım azaltma katsayısının değerleri sırasıyla 0.60 ve 0.65 olarak önerilmiştir. Çalışma sonucunda lifli polimerle güçlendirilmiş kolonlar için ACI 318-19 yönetmeliğinde önerilen dayanım azaltma katsayısı değerleri, farklı varyasyon katsayıları için elde edilen dayanım azaltma katsayısı değerleri ile karşılaştırılmıştır.

Kaynakça

  • [1] Tarawneh A., Sereen Majdalaweyh S., (2020). Design and reliability analysis of FRP-reinforced concrete columns, Structures, Cilt 28, s.1580-1588. DOI:10.1016/j.istruc.2020.10.009
  • [2] Xiao Y., Wu H., 2000. Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets, Journal of Materials in Civil Engineering, Cilt. 12(2), s. 139-146. DOI: 10.1061/(ASCE)0899-1561(2000)12:2(139)
  • [3] Zou Y., Hong H.P., 2008. Reliability Assessment of FRP-Confined Columns Designed for Buildings, Structure and Infrastructure Engineering, Cilt. 7(3), s. 243-258. DOI: 10.1080/15732470802416998
  • [4] Alqam M., Bennett R.M., Zureick A-H. 2004. Probabilistic Based Design of Concentrically Loaded Fiber-Reinforced Polymeric Compression Members, Journal of Structural Engineering, Cilt. 130(12), s. 1914-1920. DOI: 10.1061/(ASCE)0733-9445(2004)130:12(1914)
  • [5] Yingwu Z., Feng X., Lili S. (2013). Reliability Assessments of Concrete Filled FRP Tube Columns, Applied Mechanics and Materials, Cilt 405-408, s.731-734. DOI: 10.4028/www.scientific.net/AMM.405-408.731
  • [6] Mirza S.A. 1996. Reliability-Based Design of Reinforced Concrete Columns, Structural Safety, Cilt. 18(2), s. 179-194. DOI: 10.1016/0167-4730(96)00010-0
  • [7] Arslan, G., Alacalı, S. N., Sağıroğlu, A. 2015. The Investigation of the Strength Reduction Factor in Predicting the Shear Strength, Journal of Theoretical and Applied Mechanics (JTAM), Cilt. 53(2), s. 371-381. DOI: 10.15632/jtam-pl.53.2.371
  • [8] Arslan, G., Alacalı, S., Sağıroğlu, A. 2016. Assessing Reduction in Concrete Shear Strength Contribution, Proceedings of the Institution of Civil Engineers - Structures and Building, Cilt. 169(4),s. 237-244. DOI: 10.1680/jstbu.14.00102
  • [9] Alacalı, S., Arslan, G., 2018. Assessment of the Strength Reduction Factor in Predicting the Flexural Strength, Journal of Theoretical and Applied Mechanics, Cilt. 56(4) s. 1043-1053. DOI: 10.15632/jtam-pl.56.4.1043
  • [10] American Concrete Institute Committee 318 (ACI318), 2005. Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary, Farmington Hills, MI
  • [11] American Concrete Institute Committee 318 (ACI318), 2014. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, Farmington Hills, MI
  • [12] American Concrete Institute Committee 318 (ACI318), 2019. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, Farmington Hills, MI
  • [13] American Concrete Institute Committee 440 (440.2R-17), 2017. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, Farmington Hills, MI
  • [14] Ang A.H.S., Tang W.H., 1984. Probability Concepts in Engineering Planning and Design, Cilt. 2-Decision, Risk and Reliability, Wiley, NY
  • [15] Hao H., Li Z.X., Shi Y. 2015. Reliability Analysis of RC Columns and Frame with FRP Strengthening Subjected to Explosive Loads, Journal of Performance of Constructed Facilities, 04015017, DOI: 10.1061/(ASCE)CF.1943-5509.0000748
  • [16] Ali O. 2017. Structural Reliability of Biaxial Loaded Short/Slender-Square FRP-Confined RC Columns, Construction and Building Materials, Cilt. 151, s. 370-382. DOI: 10.1016/ j.conbuildmat.2017.06.032
  • [17] Jafari F. 2014. Reliability of FRP Reinforced Concrete Columns, 1. Persian Gulf International Conference on Sustainable Concrete, 17-18 December, Bandar Abbas
  • [18] Val D., Bljuger F., Yankelevsky D. 1997. Reliability Evaluation in Nonlinear Analysis of Reinforced Concrete Structures, Structural Safety, Cilt. 19, s. 203-217. DOI: 10.1016/S0167-4730(96)00025-2
  • [19] Atadero R.A., Karbhari V. M. 2007. Calibration of Resistance Factors for Reliability Based Design of Externally Bonded FRP Composites, Composites: Part B, Cilt. 39, s. 665-679. DOI: 10.1016/j.compositesb.2007.06.004
  • [20] Hong H.P., Zhou W. 1999. Reliability Evaluation of RC Columns, Journal of Structural Engineering, Cilt. 125(7), s. 784-790. DOI: 10.1061/(ASCE)0733-9445(1999)125:7(784)
  • [21] Monti G., Santini S. 2002. Reliability Based Calibration of Partial Safety Coefficient for Fiber-Reinforced Plastic, Journal of Composites for Construction, Cilt. 6(3), s. 162-167. DOI: 10.1061/(ASCE)1090-0268(2002)6:3(162)
  • [22] Kim J.H., Lee S.H., Paik I., Lee H.S. 2015. Reliability Assessment of Reinforced Concrete Columns Based on the P-M Interaction Diagram Using AFOSM, Structural Safety, Cilt. 55, s. 70-79. DOI: 10.1016/j.strusafe.2015.03.003
  • [23] Val D.V. 2003. Reliability of Fiber-Reinforced Polymer-Confined Reinforced Concrete Columns, Journal of Structural Engineering, Cilt. 129(8), s. 1122-1130. DOI: 10.1061/(ASCE)0733-9445(2003)129:8(1122)
  • [24] Taki A., Firouzi A., Mohammadzadeh S. 2018. Life Cycle Reliability Assessment of Reinforced Concrete Beams Shear-Strengthened with Carbon Fiber Reinforced Polymer Strips in Accordance with Fib Bulletin 14, Structural Concrete, Cilt. 19(6), s. 2017-2028. DOI: 10.1002/suco.201700289
  • [25] Wieghaus K.T., Atadero R.A. 2011. Effect of Existing Structure and FRP Uncertainties on the reliability of FRP-Based Repair, Journal of Composites for Construction, Cilt. 15(4), s. 635-643. DOI: 10.1061/(ASCE)CC. 1943-5614.0000197
  • [26] Okeil A.M., El-Tawil S., Shahawy M. 2002. Flexural Reliability of Reinforced Concrete Bridge Girders Strengthened with Carbon Fiber-Reinforced Polymer Laminates, Journal of Bridge Engineering, Cilt. 7(5), s. 290-299. DOI: 10.1061/(ASCE)1084-0702(2002)7:5(290)
  • [27] Ruiz S.E., Aguilar J.C. 1994. Reliability of Short and Slender Reinforced-Concrete Columns, Journal of Structural Engineering, Cilt. 120, DOI:10.1061/(ASCE)0733-9445(1994)120:6(1850)
  • [28] Jiang Y., Yang W. 2012. An Approach Based on Theorem of Total Probability for Reliability Analysis of RC Columns with Random Eccentricity, Structural Safety, Cilt. 41, s. 37-46. DOI: 10.1016/j.strusafe.2012.11.001
  • [29] Chastre C., Silva M.A.G., 2010. Monotonic Axial Behavior and Modelling of RC Circular Columns Confined with CFRP, Engineering Structures, Cilt. 32, s. 2268-2277. DOI: 10.1016/j.engstruct.2010.04.001
  • [30] Benzaid R., Mesbah H.A., 2014. The Confinement of Concrete in Compression Using CFRP Composites-effective Design Equations, Journal of Civil Engineering and Management, Cilt. 20(5), s. 632-648. DOI: 10.3846/13923730.2013.801911
  • [31] Faustino P., Chastre C., Paula R., 2013. Design Model for Square RC Columns under Compression Confined with CFRP, Composites: Part B, Cilt. 57, s. 187-198. DOI: 10.1016/j.compositesb.2013.09.052
  • [32] Peker Ö., 2005, Düşük Dayanımlı Betonarme Elemanların CFRP ile Güçlendirilmesi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul
  • [33] Lin C.T., Li Y.F., 2003. An Effective Peak Stress Formula for Concrete Confined with Carbon Fiber Reinforced Plastics, Canadian Journal of Civil Engineering, Cilt. 30, s. 882-889. DOI: 10.1139/L03-047
  • [34] Karabinis A.I., Rousakis T.C., 2002. Concrete Confined by FRP Material: a plasticity approach, Engineering Structures, Cilt. 24, s. 923-932. DOI: 10.1016/S0141-0296(02)00011-1
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Aysun Tekin Özer 0000-0001-6239-8366

Sema Alacalı 0000-0002-1104-6552

Yayımlanma Tarihi 15 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Tekin Özer, A., & Alacalı, S. (2021). Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 995-1004. https://doi.org/10.21205/deufmd.2021236925
AMA Tekin Özer A, Alacalı S. Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi. DEUFMD. Eylül 2021;23(69):995-1004. doi:10.21205/deufmd.2021236925
Chicago Tekin Özer, Aysun, ve Sema Alacalı. “Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, sy. 69 (Eylül 2021): 995-1004. https://doi.org/10.21205/deufmd.2021236925.
EndNote Tekin Özer A, Alacalı S (01 Eylül 2021) Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 995–1004.
IEEE A. Tekin Özer ve S. Alacalı, “Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi”, DEUFMD, c. 23, sy. 69, ss. 995–1004, 2021, doi: 10.21205/deufmd.2021236925.
ISNAD Tekin Özer, Aysun - Alacalı, Sema. “Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (Eylül 2021), 995-1004. https://doi.org/10.21205/deufmd.2021236925.
JAMA Tekin Özer A, Alacalı S. Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi. DEUFMD. 2021;23:995–1004.
MLA Tekin Özer, Aysun ve Sema Alacalı. “Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 23, sy. 69, 2021, ss. 995-1004, doi:10.21205/deufmd.2021236925.
Vancouver Tekin Özer A, Alacalı S. Eksenel Yük Altındaki Lifli Polimer İle Sargılı Dairesel Enkesitli Kolonlarda Dayanım Azaltma Katsayısının İncelenmesi. DEUFMD. 2021;23(69):995-1004.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.