BibTex RIS Kaynak Göster

KAYA SINIFLAMA SİSTEMLERİNİN REGRESYON VE SİNİR AĞLARI TEKNİĞİ İLE İLIŞKİLENDİRİLMESİ

Yıl 2018, Cilt: 20 Sayı: 59, 354 - 368, 01.05.2018

Öz

Commonly used rock mass classification systems, Rock Mass Rating (RMR), Q-System, and Geological Strength Index (GSI) were used as input for simple regression and Neural-Network fitting. The relationship between the classification systems can be used for the estimation of unknown classification ratings. The necessary data for this study, consisting of 250 sets of rock mass classification ratings, were collected from an excavation of an underground mine opening during a time interval of more than two years. The rock mass data belongs to the Pliocene-aged Deniş formation in Soma region of Manisa/Turkey. The ratings, basic and adjusted RMR, Q, Q', and GSI were chosen for the simple regression. Three of the equations are suggested to be taken into account due to their strong correlation of determination. These equations can be utilized especially if the rating Q is known and the adjusted RMR is intended to be estimated. Additionally, basic RMR rating can be estimated by considering the GSI as an input. Utilization of the Neural Networks resulted in an improved prediction capability with a greater predicted-measured coefficient of determination. Implementing the Neural Network fitting also overcame the scatter observed in the regression analysis

Kaynakça

  • Terzaghi, K., 1946. Introduction to tunnel geology. Rock tunnelling with steel supports, pp.17-99. [2] Lauffer, H.,
  • den Gebirgsklassifizierung
  • Stollenbau. Geologie und Bauwesen, 24(1), pp.46-51. für
  • Deere, D.U., Hendron, A.J., Patton,
  • F.D. and Cording, E.J., 1966, January. Design of surface and near-surface
  • construction in rock. In The 8th US
  • Symposium on Rock Mechanics
  • (USRMS). American Rock Mechanics Association.
  • Bieniawski, Z.T., 1989. Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons.
  • Bieniawski, Z.T., 1996. Milestones in rock engineering: the Bieniawski jubilee collection. Balkema.
  • Ünal, E., Özkan, İ. and Ulusay, R., 1992. Characterization of weak, stratified and clay-bearing rock masses. In Rock Characterization: ISRM Symposium, Eurock'92, Chester, UK, 14–17 September 1992 (pp. 330- 335). Thomas Telford Publishing. [7] Goel, R.K. and Singh,
  • B., mass 2011. Engineering
  • classification: tunnelling, foundations and landslides. Elsevier.
  • Lowson, A.R. and Bieniawski, Z.T., 2013. Critical Assessment of RMR based Tunnel Design Practices: a Practical Engineer’s Approach. RETC 2013. Washington, DC USA.
  • Barton, N., Lien, R. and Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock pp.189-236.
  • Norvegian Geotechnical Institute, 2013. Using the Q-system Rock Mass Classification and Support Design. Oslo 2013. Available online at: www.ngi.no. Accessed 15 December 2014
  • Suorineni, F.T., Kaiser, P.K. and Henning, J.G., 2008. Safe rapid drifting
  • Tunnelling and Underground Space Technology, 23(6), pp.682-699.
  • Suorineni, F.T., 2009, Rock mass classification for pre-excavation support planning and at-face excavation
  • assessment. In. CIM-CARMA2009 Conference, 01 - 01 January 2009. [13] Palmström, A., 2000.
  • Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technology, 6(1), pp.1-19.
  • Aydan, Ö., Ulusay, R. and Tokashiki, N., 2014. A new rock mass quality rating system: rock mass quality rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses. Rock mechanics
  • engineering, 47(4), pp.1255-1276.
  • Hoek, E. and Brown, E.T., 1997. Practical estimates of rock mass strength. International Journal of Sciences, 34(8), pp.1165-1186.
  • Hoek, E., Carranza-Torres, C. and Corkum, B., 2002. Hoek-Brown failure
  • edition. Proceedings Tac, 1, pp.267-273. of
  • NARMS- [17] Cai, M., Kaiser, P.K., Uno, H., Tasaka, Y. and Minami, M., 2004. Estimation of rock mass deformation modulus and strength of jointed hard rock masses
  • system. International Journal of Rock Mechanics
  • Sciences, 41(1), pp.3-19. GSI and
  • Mining [18] Sonmez, H., Gokceoglu, C. and Ulusay,
  • determination of the modulus of deformation of rock masses based on the GSI system. International journal of rock mechanics and mining sciences, 41(5), pp.849-857.
  • Hoek, E., Carter, T.G. and Diederichs, M.S., 2013, January. Quantification of the geological strength index chart.
  • Mechanics/Geomechanics Symposium.
  • Mechanics Association. US Rock American
  • Rock [20] Suorineni, F.T., Kim, B.H., Kaiser, P.K., 2008, Approach to estimate rock
  • determination of the Geological Strength Index (GSI)', In Mass Mining, Lulea, Sweden, pp. 0081, presented at Mass Mining, Lulea, Sweden, 01 - 01 January 2008
  • Marinos, V., 2014. Tunnel behaviour and support associated with the weak rock masses of flysch. Journal of Rock Mechanics and Geotechnical Engineering, 6(3), pp.227-239. DOI: 10.1016/j.jrmge.2014.04.003
  • Aksoy, C.O., 2008. Review of rock mass rating classification: Historical developments, applications, and restrictions. Journal
  • Science, 44(1), pp.51-63. of Mining [23] Goel, R.K., Jethwa,
  • Paithankar, A.G., 1996, February. Correlation between Barton's Q and Bieniawski's
  • approach. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 33, No. 2, pp. 179-181). Pergamon. and RMR—A
  • new [24] Bieniawski, Z. T. (1976). Rock mass classifications in rock engineering. In Proceedings of the Symposium on Exploration for Rock Engineering (pp. 97–106 in Bieniawski, 1984). Rotterdam: A.A. Balkema. [25] Hoek, E. and Brown,
  • E.T., 1980. Underground excavations in rock (No. Monograph). (p. 527). Institution Metallurgy. Publishing. and London:
  • Maney [26] Rutledge, J.C. and Preston, R.L., 1978. Experience with engineering classifications of rock. In Proc. Int. Tunnelling Symp., Tokyo A (Vol. 3, pp. 1-A3).
  • Moreno Tallon, E., 1980. Aplicación de las clasificaciones geomecánicas a los tşneles de Pajares. II Curso de sostenimientos activos en galerías y tşneles. Fundación Gomez-Pardo, Madrid. Fundación Madrid.
  • Gomez-Parto, [28] Cameron-Clarke, I.S. and Budavari, S., 1981. Correlation of rock mass classification parameters obtained from
  • observations. Engineering
  • Geology, 17(1-2), pp.19-53.
  • in-situ [29] Abad, J., Celada, B., Chacon, E., Gutierrez, V. and Hidalgo, E., 1983, January. geomechanical
  • predict the convergence of coal mine galleries and to design their supports. In 5th ISRM Congress. International Society for Rock Mechanics.
  • of to classification
  • Tzamos, S. and Sofianos, A.I., 2007. A correlation of four rock mass classification systems through their fabric indices. International Journal of Rock Mechanics and Mining Sciences, 44(4), pp.477-495.
  • Palmström, A., 2009. Combining the RMR, Q, and RMi classification systems. Tunnelling Underground
  • Technology, 24(4), pp.491-492.
  • Tüysüz, O., Can, Ş.C., 2013, Polyak Eynez (Elmadere) Linyit Sahası Jeolojisi. Internal report.
  • Nebert, K., 1978. Lignite-bearing Soma Neogene area, western Turkey. Bulletin of Directorate of Mineral
  • Exploration, 90, pp.20-70.
  • and [34] Brinkmann R, Feist R.,1970. Soma dağlarının jeolojisi. Maden Tetkik ve Arama Dergisi. 74(74).
  • Aksoy, C.O., Kose, H., Onargan, T., Koca, Y. and Heasley, K., 2004. Estimation of limit angle using laminated
  • discontinuity analysis in the Soma coal
  • Turkey. International Journal of Rock
  • Sciences, 41(4), pp.547-556.
  • Mining [36] Dirik K., Özsayın E. ve Kahraman, B. 2010. Eynez Sahası’nın (Soma Güneyi) Yapısal Özellikleri. TKİ Genel Müdürlüğü Raporu.
  • Ulusay, R. ed., 2007. The complete ISRM suggested methods for rock characterization, monitoring: International
  • and 1974-2006. for Soc. Rock mapping
  • neural theorem. existence
  • Rafiai, H. and Jafari, A., 2011. Artificial neural networks as a basis for new generation of rock failure criteria. International Journal of Rock Sciences, 48(7),
  • DOI:10.1016/j.ijrmms.2011.06.001
  • Tumac, D., 2016. Artificial neural network application to predict the sawability performance of large diameter
  • saws. Measurement, 80,
  • DOI:10.1016/j.measurement.2015.1 1.025
  • circular pp.12-20. [43] Tiryaki, B., 2008. Application of artificial neural networks for predicting the cuttability of rocks by drag Underground
  • Technology, 23(3), pp.273-280.
  • Bilgin, N., 2006, January. Neural Networks Analysis for Estimating Rock
  • Properties. In Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association. Rock [45] Sonmez, H., Gokceoglu,
  • C., Nefeslioglu, H.A. and Kayabasi, A., 2006. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with
  • equation. International Journal of empirical Sciences, 43(2),
  • DOI:10.1016/j.ijrmms.2005.06.007
  • pp.224-235. [46] Yesiloglu-Gultekin, N., Gokceoglu, C. and Sezer, E.A., 2013. Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. International Journal of Rock Mechanics and Mining Sciences, 62,
  • DOI:10.1016/j.ijrmms.2013.05.005
  • pp.113-122. [47] Kucuk, K., Aksoy, C.O., Basarir, H., Onargan, T., Genis, M. and Ozacar, V., 2011. Prediction of the performance of impact hammer by adaptive neuro-fuzzy
  • modelling. Tunnelling Underground Technology, 26(1),
  • DOI:10.1016/j.tust.2010.06.011
  • Basarir, H., Tutluoglu, L. and Karpuz, C., 2014. Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple
  • Geology, 173, pp.1-9.

REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS

Yıl 2018, Cilt: 20 Sayı: 59, 354 - 368, 01.05.2018

Öz

seçilmiştir. Bunlar arasından en yüksek determinasyon katsayısına sahip olan üç eşitliğin dikkate alınması önerilmektedir. Eşitlikler, özellikle Q puanı bilindiğinde ve düzeltilmiş RMR’nin kestirilmesinde faydalanılabilir. İlave olarak, Temel RMR puanı GSI kullanılarak kestirilebilmektedir. Sinir Ağı en iyileme uygulaması, iyileştirilmiş bir kestirim imkanını daha yüksek determinasyon katsayısı ile sağlamıştır. Sinir ağları en iyileme uygulaması, regresyonlardaki gözlemlenen saçınımın üstesinden gelinmesini de sağlamıştır

Kaynakça

  • Terzaghi, K., 1946. Introduction to tunnel geology. Rock tunnelling with steel supports, pp.17-99. [2] Lauffer, H.,
  • den Gebirgsklassifizierung
  • Stollenbau. Geologie und Bauwesen, 24(1), pp.46-51. für
  • Deere, D.U., Hendron, A.J., Patton,
  • F.D. and Cording, E.J., 1966, January. Design of surface and near-surface
  • construction in rock. In The 8th US
  • Symposium on Rock Mechanics
  • (USRMS). American Rock Mechanics Association.
  • Bieniawski, Z.T., 1989. Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons.
  • Bieniawski, Z.T., 1996. Milestones in rock engineering: the Bieniawski jubilee collection. Balkema.
  • Ünal, E., Özkan, İ. and Ulusay, R., 1992. Characterization of weak, stratified and clay-bearing rock masses. In Rock Characterization: ISRM Symposium, Eurock'92, Chester, UK, 14–17 September 1992 (pp. 330- 335). Thomas Telford Publishing. [7] Goel, R.K. and Singh,
  • B., mass 2011. Engineering
  • classification: tunnelling, foundations and landslides. Elsevier.
  • Lowson, A.R. and Bieniawski, Z.T., 2013. Critical Assessment of RMR based Tunnel Design Practices: a Practical Engineer’s Approach. RETC 2013. Washington, DC USA.
  • Barton, N., Lien, R. and Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock pp.189-236.
  • Norvegian Geotechnical Institute, 2013. Using the Q-system Rock Mass Classification and Support Design. Oslo 2013. Available online at: www.ngi.no. Accessed 15 December 2014
  • Suorineni, F.T., Kaiser, P.K. and Henning, J.G., 2008. Safe rapid drifting
  • Tunnelling and Underground Space Technology, 23(6), pp.682-699.
  • Suorineni, F.T., 2009, Rock mass classification for pre-excavation support planning and at-face excavation
  • assessment. In. CIM-CARMA2009 Conference, 01 - 01 January 2009. [13] Palmström, A., 2000.
  • Recent developments in rock support estimates by the RMi. Journal of Rock Mechanics and Tunnelling Technology, 6(1), pp.1-19.
  • Aydan, Ö., Ulusay, R. and Tokashiki, N., 2014. A new rock mass quality rating system: rock mass quality rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses. Rock mechanics
  • engineering, 47(4), pp.1255-1276.
  • Hoek, E. and Brown, E.T., 1997. Practical estimates of rock mass strength. International Journal of Sciences, 34(8), pp.1165-1186.
  • Hoek, E., Carranza-Torres, C. and Corkum, B., 2002. Hoek-Brown failure
  • edition. Proceedings Tac, 1, pp.267-273. of
  • NARMS- [17] Cai, M., Kaiser, P.K., Uno, H., Tasaka, Y. and Minami, M., 2004. Estimation of rock mass deformation modulus and strength of jointed hard rock masses
  • system. International Journal of Rock Mechanics
  • Sciences, 41(1), pp.3-19. GSI and
  • Mining [18] Sonmez, H., Gokceoglu, C. and Ulusay,
  • determination of the modulus of deformation of rock masses based on the GSI system. International journal of rock mechanics and mining sciences, 41(5), pp.849-857.
  • Hoek, E., Carter, T.G. and Diederichs, M.S., 2013, January. Quantification of the geological strength index chart.
  • Mechanics/Geomechanics Symposium.
  • Mechanics Association. US Rock American
  • Rock [20] Suorineni, F.T., Kim, B.H., Kaiser, P.K., 2008, Approach to estimate rock
  • determination of the Geological Strength Index (GSI)', In Mass Mining, Lulea, Sweden, pp. 0081, presented at Mass Mining, Lulea, Sweden, 01 - 01 January 2008
  • Marinos, V., 2014. Tunnel behaviour and support associated with the weak rock masses of flysch. Journal of Rock Mechanics and Geotechnical Engineering, 6(3), pp.227-239. DOI: 10.1016/j.jrmge.2014.04.003
  • Aksoy, C.O., 2008. Review of rock mass rating classification: Historical developments, applications, and restrictions. Journal
  • Science, 44(1), pp.51-63. of Mining [23] Goel, R.K., Jethwa,
  • Paithankar, A.G., 1996, February. Correlation between Barton's Q and Bieniawski's
  • approach. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 33, No. 2, pp. 179-181). Pergamon. and RMR—A
  • new [24] Bieniawski, Z. T. (1976). Rock mass classifications in rock engineering. In Proceedings of the Symposium on Exploration for Rock Engineering (pp. 97–106 in Bieniawski, 1984). Rotterdam: A.A. Balkema. [25] Hoek, E. and Brown,
  • E.T., 1980. Underground excavations in rock (No. Monograph). (p. 527). Institution Metallurgy. Publishing. and London:
  • Maney [26] Rutledge, J.C. and Preston, R.L., 1978. Experience with engineering classifications of rock. In Proc. Int. Tunnelling Symp., Tokyo A (Vol. 3, pp. 1-A3).
  • Moreno Tallon, E., 1980. Aplicación de las clasificaciones geomecánicas a los tşneles de Pajares. II Curso de sostenimientos activos en galerías y tşneles. Fundación Gomez-Pardo, Madrid. Fundación Madrid.
  • Gomez-Parto, [28] Cameron-Clarke, I.S. and Budavari, S., 1981. Correlation of rock mass classification parameters obtained from
  • observations. Engineering
  • Geology, 17(1-2), pp.19-53.
  • in-situ [29] Abad, J., Celada, B., Chacon, E., Gutierrez, V. and Hidalgo, E., 1983, January. geomechanical
  • predict the convergence of coal mine galleries and to design their supports. In 5th ISRM Congress. International Society for Rock Mechanics.
  • of to classification
  • Tzamos, S. and Sofianos, A.I., 2007. A correlation of four rock mass classification systems through their fabric indices. International Journal of Rock Mechanics and Mining Sciences, 44(4), pp.477-495.
  • Palmström, A., 2009. Combining the RMR, Q, and RMi classification systems. Tunnelling Underground
  • Technology, 24(4), pp.491-492.
  • Tüysüz, O., Can, Ş.C., 2013, Polyak Eynez (Elmadere) Linyit Sahası Jeolojisi. Internal report.
  • Nebert, K., 1978. Lignite-bearing Soma Neogene area, western Turkey. Bulletin of Directorate of Mineral
  • Exploration, 90, pp.20-70.
  • and [34] Brinkmann R, Feist R.,1970. Soma dağlarının jeolojisi. Maden Tetkik ve Arama Dergisi. 74(74).
  • Aksoy, C.O., Kose, H., Onargan, T., Koca, Y. and Heasley, K., 2004. Estimation of limit angle using laminated
  • discontinuity analysis in the Soma coal
  • Turkey. International Journal of Rock
  • Sciences, 41(4), pp.547-556.
  • Mining [36] Dirik K., Özsayın E. ve Kahraman, B. 2010. Eynez Sahası’nın (Soma Güneyi) Yapısal Özellikleri. TKİ Genel Müdürlüğü Raporu.
  • Ulusay, R. ed., 2007. The complete ISRM suggested methods for rock characterization, monitoring: International
  • and 1974-2006. for Soc. Rock mapping
  • neural theorem. existence
  • Rafiai, H. and Jafari, A., 2011. Artificial neural networks as a basis for new generation of rock failure criteria. International Journal of Rock Sciences, 48(7),
  • DOI:10.1016/j.ijrmms.2011.06.001
  • Tumac, D., 2016. Artificial neural network application to predict the sawability performance of large diameter
  • saws. Measurement, 80,
  • DOI:10.1016/j.measurement.2015.1 1.025
  • circular pp.12-20. [43] Tiryaki, B., 2008. Application of artificial neural networks for predicting the cuttability of rocks by drag Underground
  • Technology, 23(3), pp.273-280.
  • Bilgin, N., 2006, January. Neural Networks Analysis for Estimating Rock
  • Properties. In Golden Rocks 2006, The 41st US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association. Rock [45] Sonmez, H., Gokceoglu,
  • C., Nefeslioglu, H.A. and Kayabasi, A., 2006. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with
  • equation. International Journal of empirical Sciences, 43(2),
  • DOI:10.1016/j.ijrmms.2005.06.007
  • pp.224-235. [46] Yesiloglu-Gultekin, N., Gokceoglu, C. and Sezer, E.A., 2013. Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. International Journal of Rock Mechanics and Mining Sciences, 62,
  • DOI:10.1016/j.ijrmms.2013.05.005
  • pp.113-122. [47] Kucuk, K., Aksoy, C.O., Basarir, H., Onargan, T., Genis, M. and Ozacar, V., 2011. Prediction of the performance of impact hammer by adaptive neuro-fuzzy
  • modelling. Tunnelling Underground Technology, 26(1),
  • DOI:10.1016/j.tust.2010.06.011
  • Basarir, H., Tutluoglu, L. and Karpuz, C., 2014. Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple
  • Geology, 173, pp.1-9.
Toplam 85 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA57GG59YH
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Ferid Öge Bu kişi benim

Yayımlanma Tarihi 1 Mayıs 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 59

Kaynak Göster

APA Öge, İ. F. (2018). REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 20(59), 354-368.
AMA Öge İF. REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS. DEUFMD. Mayıs 2018;20(59):354-368.
Chicago Öge, İbrahim Ferid. “REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 20, sy. 59 (Mayıs 2018): 354-68.
EndNote Öge İF (01 Mayıs 2018) REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20 59 354–368.
IEEE İ. F. Öge, “REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS”, DEUFMD, c. 20, sy. 59, ss. 354–368, 2018.
ISNAD Öge, İbrahim Ferid. “REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20/59 (Mayıs 2018), 354-368.
JAMA Öge İF. REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS. DEUFMD. 2018;20:354–368.
MLA Öge, İbrahim Ferid. “REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 20, sy. 59, 2018, ss. 354-68.
Vancouver Öge İF. REGRESSION ANALYSIS AND NEURAL NETWORK FITTING OF ROCK MASS CLASSIFICATION SYSTEMS. DEUFMD. 2018;20(59):354-68.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.