In this study, critical buckling load analysis for first mode of layered functionally graded shell structures made of silicon nitride (Si3N4)/stainless steel (SUS304) systems is studied. The shell structures are considered as three layers and the layer positions are carried out according to L9 (33) orthogonal array. The mechanical properties of the layers are calculated according to a simple rule of mixture of composite materials. The mechanical properties of the layers is assumed to be control factors. Optimum layer levels are obtained using signal to noise (S/N) analysis. Significant layers and their percent contributions on the results are detected using analysis of variance (ANOVA). Maximum buckling load value is carried out based on different arrangements of optimum layer levels
Koizumi M. 1997. FGM activities in Composites Japan,
Engineering, 28, 1997, p. 1-4. Part
B: [2] Singh JMS, Thangaratnam RK. 2010. Buckling and vibration analysis of FGM plates and shells. Frontiers in Automobile
Engineering (FAME), 2010: IEEE; 2010. p. 280-285.
Mechanical [3] Shariat BAS, Eslami MR. 2007. Buckling of thick functionally graded plates under mechanical and thermal
Structures, 78, 2007, p. 433-439. Composite layer,
Thin-Walled [5] Zhao X, Lee YY, Liew KM. 2009. Mechanical and thermal buckling analysis of functionally graded plates, Composite Structures, 90, 2009, p. 161-171.
Feldman E, Aboudi J. 1997. Buckling analysis of functionally graded plates subjected to uniaxial loading, Composite Structures, 38, 1997, p. 29-36.
Huang H, Han Q. 2008. Buckling of imperfect
cylindrical shells under axial compression, European Journal of Mechanics - A/Solids, 27, 2008, p. 1026-1036.
graded [8] Ramu I, Mohanty SC. 2014. Buckling of Analysis Functionally Graded Material Plates under Compression Engineering, 86, 2014, p. 748-757.
Procedia Load, [9] Mohammadi M, Saidi AR, Jomehzadeh E. 2010. Levy Solution for
Functionally Graded Rectangular Plates, Materials, 17, 2010, p. 81-93. of Applied
Composite [10] Javaheri R, Eslami M. 2002. Buckling of Functionally Graded Plates under In‐plane Compressive Loading, ZAMM‐Journal of Applied Mathematics
Mechanics/Zeitschrift Angewandte Mechanik, 82, 2002, p. 277-283.
Reddy BS, Kumar JS, Reddy CE, Reddy KVK. 2013. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory, Journal of Composites, 2013, 2013, p. 1-12.
Mahdavian M. 2009. Buckling analysis functionally graded rectangular plates under non-uniform in-plane compressive loading, Journal of Solid Mechanics, 1, 2009, p. 213- 225.
Sepiani HA, Rastgoo A, Ebrahimi F, Ghorbanpour Arani A. 2010. Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia, Materials & Design, 31, 2010, p. 1063-1069.
Saha R, Maiti P. 2012. Buckling of simply supported FGM plates under uniaxial load, International Journal of Civil and Structural Engineering, 2, 2012, p. 1035-1050.
Bodaghi M, Saidi AR. 2010. Levy- type solution for buckling analysis of rectangular plates based on the higher-order shear deformation plate theory, Applied Mathematical Modelling, 34, 2010, p. 3659-3673.
Bagherizadeh E, Kiani Y, Eslami MR. 2011. Mechanical buckling of functionally cylindrical shells surrounded by Pasternak Composite Structures, 93, 2011, p. 3063-3071.
the [18] Oyekoya OO, Mba DU, El-Zafrany AM. 2009. Buckling and vibration analysis of functionally graded composite structures using the finite element method, Composite Structures, 89, 2009, p. 134-142.
Talha M, Singh BN. 2010. Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Applied Mathematical Modelling, 34, 2010, p. 3991-4011.
Shen H-S. Functionally graded materials: nonlinear analysis of plates and shells: CRC press,Boca Raton; 2009.
Roy RK. A primer on the Taguchi method: Van Nostrand Reinhold, New York; 1990.
Ross PJ. Taguchi Techniques for Quality Engineering, 2nd Edition, McGraw-Hill International Book Company, New York; 1996.
CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES
Yıl 2018,
Cilt: 20 Sayı: 59, 595 - 605, 01.05.2018
Bu çalışmada, silisyum nitrür (Si3N4)/paslanmaz çelik (SUS304) derecelendirilmiş kabuk yapıların birinci mod için kritik burkulma yük analizi çalışılmıştır. Kabuk yapılar üç tabakalı olarak düşünülmüş ve tabaka pozisyonları L9 (33) ortogonal diziye göre gerçekleştirilmiştir. Tabakaların mekanik özellikleri, kompozit malzeme karışımının basit kuralına bağlı olarak hesaplanmıştır. Tabakaların mekanik özellikleri kontrol faktörleri olarak kabul edilmiştir. Optimum tabaka seviyeleri sinyal gürültü (S/N) analizi kullanılarak elde edilmiştir. Sonuçlar üzerinde önemli tabakalar ve onların yüzde katkıları varyans analizi (ANOVA) kullanılarak tespit edilmiştir. Maksimum burkulma yük değeri optimum tabakaların farklı sıralamasına bağlı gerçekleştirilmiştir
Koizumi M. 1997. FGM activities in Composites Japan,
Engineering, 28, 1997, p. 1-4. Part
B: [2] Singh JMS, Thangaratnam RK. 2010. Buckling and vibration analysis of FGM plates and shells. Frontiers in Automobile
Engineering (FAME), 2010: IEEE; 2010. p. 280-285.
Mechanical [3] Shariat BAS, Eslami MR. 2007. Buckling of thick functionally graded plates under mechanical and thermal
Structures, 78, 2007, p. 433-439. Composite layer,
Thin-Walled [5] Zhao X, Lee YY, Liew KM. 2009. Mechanical and thermal buckling analysis of functionally graded plates, Composite Structures, 90, 2009, p. 161-171.
Feldman E, Aboudi J. 1997. Buckling analysis of functionally graded plates subjected to uniaxial loading, Composite Structures, 38, 1997, p. 29-36.
Huang H, Han Q. 2008. Buckling of imperfect
cylindrical shells under axial compression, European Journal of Mechanics - A/Solids, 27, 2008, p. 1026-1036.
graded [8] Ramu I, Mohanty SC. 2014. Buckling of Analysis Functionally Graded Material Plates under Compression Engineering, 86, 2014, p. 748-757.
Procedia Load, [9] Mohammadi M, Saidi AR, Jomehzadeh E. 2010. Levy Solution for
Functionally Graded Rectangular Plates, Materials, 17, 2010, p. 81-93. of Applied
Composite [10] Javaheri R, Eslami M. 2002. Buckling of Functionally Graded Plates under In‐plane Compressive Loading, ZAMM‐Journal of Applied Mathematics
Mechanics/Zeitschrift Angewandte Mechanik, 82, 2002, p. 277-283.
Reddy BS, Kumar JS, Reddy CE, Reddy KVK. 2013. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory, Journal of Composites, 2013, 2013, p. 1-12.
Mahdavian M. 2009. Buckling analysis functionally graded rectangular plates under non-uniform in-plane compressive loading, Journal of Solid Mechanics, 1, 2009, p. 213- 225.
Sepiani HA, Rastgoo A, Ebrahimi F, Ghorbanpour Arani A. 2010. Vibration and buckling analysis of two-layered functionally graded cylindrical shell, considering the effects of transverse shear and rotary inertia, Materials & Design, 31, 2010, p. 1063-1069.
Saha R, Maiti P. 2012. Buckling of simply supported FGM plates under uniaxial load, International Journal of Civil and Structural Engineering, 2, 2012, p. 1035-1050.
Bodaghi M, Saidi AR. 2010. Levy- type solution for buckling analysis of rectangular plates based on the higher-order shear deformation plate theory, Applied Mathematical Modelling, 34, 2010, p. 3659-3673.
Bagherizadeh E, Kiani Y, Eslami MR. 2011. Mechanical buckling of functionally cylindrical shells surrounded by Pasternak Composite Structures, 93, 2011, p. 3063-3071.
the [18] Oyekoya OO, Mba DU, El-Zafrany AM. 2009. Buckling and vibration analysis of functionally graded composite structures using the finite element method, Composite Structures, 89, 2009, p. 134-142.
Talha M, Singh BN. 2010. Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Applied Mathematical Modelling, 34, 2010, p. 3991-4011.
Shen H-S. Functionally graded materials: nonlinear analysis of plates and shells: CRC press,Boca Raton; 2009.
Roy RK. A primer on the Taguchi method: Van Nostrand Reinhold, New York; 1990.
Ross PJ. Taguchi Techniques for Quality Engineering, 2nd Edition, McGraw-Hill International Book Company, New York; 1996.
Evran, S. (2018). CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 20(59), 595-605.
AMA
Evran S. CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES. DEUFMD. Mayıs 2018;20(59):595-605.
Chicago
Evran, Savas. “CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 20, sy. 59 (Mayıs 2018): 595-605.
EndNote
Evran S (01 Mayıs 2018) CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20 59 595–605.
IEEE
S. Evran, “CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES”, DEUFMD, c. 20, sy. 59, ss. 595–605, 2018.
ISNAD
Evran, Savas. “CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20/59 (Mayıs 2018), 595-605.
JAMA
Evran S. CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES. DEUFMD. 2018;20:595–605.
MLA
Evran, Savas. “CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 20, sy. 59, 2018, ss. 595-0.
Vancouver
Evran S. CRITICAL BUCKLING LOAD ANALYSIS OF LAYERED FUNCTIONALLY GRADED SHELL STRUCTURES. DEUFMD. 2018;20(59):595-60.