BibTex RIS Kaynak Göster

EXAMINATION OF THE DISPLACEMENT AND DEFORMATION DUE TO 24TH MAY 2014 (ML=6.5) OFFSHORE OF GÖKÇEADA (IMBROS) AEGEAN SEA EARTHQUAKE

Yıl 2018, Cilt: 20 Sayı: 58, 230 - 244, 01.01.2018

Öz

Investigation of the effect areas and occurred deformation due to major earthquakes is a significant finding for geosciences. Major earthquakes create displacement and deformation in great areas with the effect of co-seismic and postseismic movements. In this study, the earthquake, which was occurred at 24th May 2014 with Ml=6.5 offshore of Gökçeada (Imbros) in Aegean Sea and was felt in Marmara and Aegean regions, was handled and the effects of the earthquakes were examined. Marmara and Aegean regions were selected as the study area and 13 days GPS data, which included pre-seismic, coseismic and post-seismic effects, were processed of 14 continuous GNSS stations of CORS-TR (TUSAGA-Aktif) and the movements of these stations were figured out by examining the time-series. Consequently, it has been determined that this earthquake has affected all of the 14 stations and caused the deformation

Kaynakça

  • [1] Sunbul, F., Nalbant, S.S., Simão N.M., Steacy, S. 2016. Investigating viscoelastic postseismic deformation due to large earthquakes in East Anatolia, Turkey, Journal of Geodynamics, Cilt. 94–95, s. 25-33.
  • [2] Thatcher, W., Pollitz, F.F. 2008. Temporal evolution of continental lithospheric strength in actively deforming regions, GSA Today, Cilt. 18, s. 4–11.
  • [3] Pollitz, F. F., Wicks, C., Thatcher, W. 2001. Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake, Science, Cilt. 293(5536), s. 1814- 1818.
  • [4] Kenner, S. J., Segall, P., 2003. Lower crustal structure in northern California: Implications from strain rate variations following the 1906 San Francisco earthquake, Journal of Geophysical Research: Solid Earth, 108(B1).
  • [5] Freed, A. M., Burgmann, R., 2004. Evidence of power-law flow in the Mojave desert mantle, Nature, Cilt. 430(6999), s. 548.
  • [6] Freed, A. M., Lin, J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature, Cilt. 411(6834), s. 180.
  • [7] Rydelek, P. A., Sacks, I. S., 2001. Migration of large earthquakes along the San Jacinto fault; stress diffusion from the 1857 Fort Tejon earthquake, Geophysical research letters, Cilt. 28(16), s. 3079-3082.
  • [8] Chery, J., Carretier, S., Ritz, J.F., 2001. Postseismic stress transfer explains time clustering of large earthquakes in Mongolia, Earth and Planetary Sciences Letters, Cilt. 194, s. 277–286.
  • [9] Casarotti, E., Piersanti, A., Lucente, F.P., Boschi, E. 2001. Global postseismic stress diffusion and fault interaction at long distances, Earth and Planetary Sciences Letters, Cilt. 191, s. 75–84.
  • [10] Pollitz, F., Bürgmann, R., Romanowicz, B. 1998. Viscosity of oceanic asthenosphere inferred from remote triggering earthquakes, Science, Cilt. 280, s.. 1245–1249.
  • [11] Nalbant, S.S., McCloskey, J. 2011. Stress evolution before and after the 2008 Wenchuan, China earthquake, Earth and Planetary Sciences Letters, Cilt. 307, s. 222– 232.
  • [12] Kahveci, M., Yıldız, F. 2009. GPS/GNSS uydularla konum belirleme sistemleri, uygulamateori, 4. baskı. Ankara, Nobel, 220s.
  • [13] Yu, S.B., Hsu, Y.J., Kuo, L.C., Chen, H.,Y., Liu, C. C. 2003. GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, Journal of Geophysical Research, Cilt. 108, s. 2520.
  • [14] Serpelloni, E., Vannucci, G., Anderlini, L., Bennett, R. A. 2016. Kinematics, seismotectonics and seismic potential of the Eastern sector of the European Alps from GPS and seismic deformation data, Tectonophysics, Cilt. 688, s. 157- 181.
  • [15] Meijer, P.T., Wortel, M.J.R 1997. Present-day dynamics of the Aegean region: A model analysis of the horizontal pattern of stress and deformation, Tectonics, Cilt. 16, s. 879– 895.
  • [16] Lundgren, P., Giardini, D., Russo, R. 1998. A geodynamic framework for eastern Mediterranean kinematics, Geophysical Research Letters, Cilt. 25, s. 4007– 4010.
  • [17] Wortel, M.J.R., Spakman, W. 2000. Subduction and slab detachment in the Mediterranean-Carpathian region, Science, Cilt. 290, s. 1910– 1917.
  • [18] Mantovani, E., Viti, M., Cenni, N., Babbucci, D. 2001. Short and long term deformation patterns in the Aegean-Anatolian system: Insights from space-geodetic data (GPS), Geophysical Research Letters, Cilt. 28, s. 2325– 2328.
  • [19] Jimenez-Munt, I., Sabadini, R. 2002. The block-like behavior of Anatolia envisaged in the modeled and geodetic strain rates, Geophysical Research Letters, Cilt. 29(20), s. 1978. doi:10.1029/2002GL015995
  • [20] Hearn, E.H., Hager, B.H., Reilinger, R.E. 2002. Viscoelastic deformation from North Anatolian Fault Zone earthquakes and the eastern Mediterranean GPS velocity field, Geophysical Research Letters, Cilt. 29(11), s. 1549. doi:10.1029/2002GL014889
  • [21] Provost, A.S., Chery, J., Hassani, R. 2003. 3D mechanical modeling of the GPS velocity field along the North Anatolian fault, Earth and Planetary Science Letters, Cilt. 209, s. 361– 377.
  • [22] Flerit, F., Armijo, R., King, G., Meyer, B., Barka, A. 2003. Slip-partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors, Geophysical Journal International, Cit. 154, s. 1–7.
  • [23] Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P. 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics, Cilt. 488, s. 22–30.
  • [24] Kahle, H.G., Cocard, M., Peter, Y., Geiger, A., Reilinger, R., Barka, A., Veis, G. 2000. GPS-derived strain field within the boundary zone of the Eurasian, African, and Arabian plates, Journal of Geophysical Research, Cilt. 105 (B10), s. 23.353–23.370.
  • [25] McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N., Veis, G. 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research, Cilt. 105(B3), s. 5695–5719.
  • [26] Nyst, M., Thatcher, W. 2004. New constraints on the active tectonic deformation of the Aegean, Journal of Geophysical Research, Cilt. 109, B11406. doi:10.1029/ 2003JB002830
  • [27] Vernant, P., Reilinger, R., McClusky, S. 2014. Geodetic evidence for low coupling on the Hellenic subduction plate interface, Earth and Planetary Science Letters, Cilt. 385, s. 122–129.
  • [28] Hollenstein, C., Müller, M.D., Geiger, A., Kahle, H.G. 2008. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003, Tectonophysics, Cilt. 449 (1–4), s. 17–40.
  • [29] Aktug, B., Nocquet, J.M., Cingoz, A., Parsons, B., Erkan, Y., England, P., Lenk, O., Gurda, M.A., Kilicoglu, A., Akdeniz, H., Tekgul, A. 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior, Journal of Geophysical Research, Cilt. 114, s. 1–22.
  • [30] Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.M., Palamartchouk, K., Parsons, B., England, P.C. 2010. A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean, Journal of Geophysical Research, Cilt. 115, B10403.
  • [31] Pamukçu, O., Kahveci, M., Ersay, E.Y., Yurdakul, A., Şalk, M., Sözbilir, H. 2010a. Determination of the kinematic structure of Izmir and surrounding using repeated GPS/GNSS observations: Preliminary Results. 15th General Assembly of Wegener, 14-17 Eylül, İstanbul, 7
  • [32] Pamukçu, O., Yurdakul, A., Kahveci, M., Şalk, M., Gönenç, T., Ersay, E., Ergintav, S., Belgen, A. 2010b. Evaluation of microgravity and GPS/GNSS data together by the network system and a case study in İzmir (Western Turkey). 10th International Multidisciplinary Scientific Geoconference SGEM 2010, 20-16 Haziran, Albena, Bulgaristan, 777-782.
  • [33] Pamukçu, O., Gönenç, T., Çırmık, A., Sındırgı, P., Kaftan, I., Akdemir, Ö. 2015a. Investigation of vertical mass changes in the south of Izmir (Turkey) by monitoring microgravity and GPS/GNSS methods, Journal of Earth System Science, Cilt. 124, No. 1, s. 137–148.
  • [34] Pamukçu, O., Gönenç, T., Çırmık, Y.A., Kahveci, M. 2015b. Investigation of the Sıgacık Bay’s displacement characteristic by using GPS and gravity data in Western Anatolia, Journal of Asian Earth Scince, Cilt. 99, s. 72–84.
  • [35] Çırmık, A. 2014. Determining the deformations in Western Anatolia with GPS and gravity measurements. Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilmleri Enstitüsü, İzmir.
  • [36] Çırmık, A., Pamukçu, O., Akçığ, Z. 2016a. Mass and stress changes in the Menderes Massif (Western Anatolia, Turkey), Journal of Asian Earth Science, Cilt. 131, s. 109-122.
  • [37] Çırmık, A., Özdag, O.C., Doğru, F., Pamuk, E., Gönenç, T., Pamukçu, O., Akgün, M., Arslan, A.T. 2016b. The Soil Behaviours of the GNSS Station, Earth Science, Cilt. 5(5), s. 70-81.
  • [38] Çırmık, A., Pamukçu, O., Gönenç, T., Kahveci, M., Şalk, M., Herring, T. 2017a. Examination of the kinematic structures in İzmir (Western Anatolia) with repeated GPS observations (2009, 2010 and 2011), Journal of African Earth Science, Cilt. 126, s. 1-12.
  • [39] Çırmık, A., Doğru, F., Gönenç, T., Pamukçu, O. 2017b. The stress/Strain analysis of kinematic structure at Gülbahçe Fault and Uzunkuyu Intrusive (İzmir, Turkey), Pure and Applied Geophysics, Cilt. 1-16. DOI 10.1007/s00024-017-1474-5
  • [40] Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Ulusal Deprem İzleme Merkezi, 2014. 24 Mayıs 2014 Gökçeada Açıkları Ege Denizi Depremi Basın Bülteni. http://udim.koeri.boun.edu.tr/Dep remler/onemliler/24052014_1225 TSIKuzeyEgeDeniziDepremi_.pdf (Erişim Tarihi : 05.08.2017)
  • [41] Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), 2014. 24/05/2014 Gökçeada Açıkları Ege Denizi Depremi (Mw= 6.5) Ön raporu. https://www.afad.gov.tr/upload/N ode/3929/xfiles/ege-denizidepremi-on-raporu-r.pdf (Erişim Tarihi : 05.08.2017)
  • [42] Herring, T.A., King, R.W., Floyd, M.A., McClusky, S.C. 2015. Introduction to GAMIT/GLOBK, Release 10.6. Massachusetts Institute of Technology, Cambridge.
  • [43] Amerikan Jeolojik Araştırma Kurumu (USGS) USGS, 2014. M6.9 Aegean Sea Earthquake of 24 May 2014. https://earthquake.usgs.gov/archi ve/product/poster/20140524/us/ 1480722169905/poster.pdf (Erişim Tarihi : 05.08.2017)
  • [44] Kiratzi, A., Tsakiroudi, E., Benetatos, C., Karakaisis, G. 2016. The 24 May 2014 (Mw6. 8) earthquake (North Aegean Trough): Spatiotemporal evolution, source and slip model from teleseismic data, Physics and Chemistry of the Earth, Parts A/B/C, Cilt. 95, s. 85-100.
  • [45] Maden Tetkik ve Arama Genel Müdürlüğü, Türkiye Diri Fay haritası, 2005.
  • [46] Yaltırak, C., Alpar, B., Sakınç, M., Yüce, H., 2000. Origin of the Strait of Çanakkale (Dardanelles): regional tectonics and the Mediterranean–Marmara incursion, Marine Geology, Cilt. 164(3), s. 139-156.
  • [47] Wessel, P., Smith, W.H.F. 1998. New, improved version of the generic mapping tools released, American Geoscience Union, Cilt. 79, s. 579.

24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ

Yıl 2018, Cilt: 20 Sayı: 58, 230 - 244, 01.01.2018

Öz

Bir depremin etki alanının ve meydana getirdiği deformasyonların incelenmesi yerbilimleri açısından önemli bir bulgudur. Büyük depremler deprem anı ve deprem sonrasında büyük alanlarda yer değiştirme ve deformasyonlar meydana getirmektedir. Bu çalışmada, 24 Mayıs 2014 tarihinde Gökçeada açıkları Ege Denizi’nde Ml=6,5 büyüklüğünde meydana gelen deprem ele alınmış, Marmara ve Ege Bölgeleri’nde hissedilen bu depremin yer değiştirme etkileri irdelenmiştir. Çalışma alanı olan Marmara ve Ege Bölgeleri’nde kurulu 14 adet TUSAGA-Aktif sistemine ait sürekli GNSS istasyonlarının deprem öncesi, deprem anı ve deprem sonrasını içeren 13 günlük GPS verisi çözümlenerek, bu istasyonların bu depreme bağlı olarak nasıl hareket ettiği, bu istasyonların zaman serilerinin incelenmesiyle ortaya konmuştur. Sonuç olarak, bu depremin 14 adet istasyonunun tümünü etkilediği ve deformasyonlara neden olduğu görülmüştür

Kaynakça

  • [1] Sunbul, F., Nalbant, S.S., Simão N.M., Steacy, S. 2016. Investigating viscoelastic postseismic deformation due to large earthquakes in East Anatolia, Turkey, Journal of Geodynamics, Cilt. 94–95, s. 25-33.
  • [2] Thatcher, W., Pollitz, F.F. 2008. Temporal evolution of continental lithospheric strength in actively deforming regions, GSA Today, Cilt. 18, s. 4–11.
  • [3] Pollitz, F. F., Wicks, C., Thatcher, W. 2001. Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake, Science, Cilt. 293(5536), s. 1814- 1818.
  • [4] Kenner, S. J., Segall, P., 2003. Lower crustal structure in northern California: Implications from strain rate variations following the 1906 San Francisco earthquake, Journal of Geophysical Research: Solid Earth, 108(B1).
  • [5] Freed, A. M., Burgmann, R., 2004. Evidence of power-law flow in the Mojave desert mantle, Nature, Cilt. 430(6999), s. 548.
  • [6] Freed, A. M., Lin, J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature, Cilt. 411(6834), s. 180.
  • [7] Rydelek, P. A., Sacks, I. S., 2001. Migration of large earthquakes along the San Jacinto fault; stress diffusion from the 1857 Fort Tejon earthquake, Geophysical research letters, Cilt. 28(16), s. 3079-3082.
  • [8] Chery, J., Carretier, S., Ritz, J.F., 2001. Postseismic stress transfer explains time clustering of large earthquakes in Mongolia, Earth and Planetary Sciences Letters, Cilt. 194, s. 277–286.
  • [9] Casarotti, E., Piersanti, A., Lucente, F.P., Boschi, E. 2001. Global postseismic stress diffusion and fault interaction at long distances, Earth and Planetary Sciences Letters, Cilt. 191, s. 75–84.
  • [10] Pollitz, F., Bürgmann, R., Romanowicz, B. 1998. Viscosity of oceanic asthenosphere inferred from remote triggering earthquakes, Science, Cilt. 280, s.. 1245–1249.
  • [11] Nalbant, S.S., McCloskey, J. 2011. Stress evolution before and after the 2008 Wenchuan, China earthquake, Earth and Planetary Sciences Letters, Cilt. 307, s. 222– 232.
  • [12] Kahveci, M., Yıldız, F. 2009. GPS/GNSS uydularla konum belirleme sistemleri, uygulamateori, 4. baskı. Ankara, Nobel, 220s.
  • [13] Yu, S.B., Hsu, Y.J., Kuo, L.C., Chen, H.,Y., Liu, C. C. 2003. GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, Journal of Geophysical Research, Cilt. 108, s. 2520.
  • [14] Serpelloni, E., Vannucci, G., Anderlini, L., Bennett, R. A. 2016. Kinematics, seismotectonics and seismic potential of the Eastern sector of the European Alps from GPS and seismic deformation data, Tectonophysics, Cilt. 688, s. 157- 181.
  • [15] Meijer, P.T., Wortel, M.J.R 1997. Present-day dynamics of the Aegean region: A model analysis of the horizontal pattern of stress and deformation, Tectonics, Cilt. 16, s. 879– 895.
  • [16] Lundgren, P., Giardini, D., Russo, R. 1998. A geodynamic framework for eastern Mediterranean kinematics, Geophysical Research Letters, Cilt. 25, s. 4007– 4010.
  • [17] Wortel, M.J.R., Spakman, W. 2000. Subduction and slab detachment in the Mediterranean-Carpathian region, Science, Cilt. 290, s. 1910– 1917.
  • [18] Mantovani, E., Viti, M., Cenni, N., Babbucci, D. 2001. Short and long term deformation patterns in the Aegean-Anatolian system: Insights from space-geodetic data (GPS), Geophysical Research Letters, Cilt. 28, s. 2325– 2328.
  • [19] Jimenez-Munt, I., Sabadini, R. 2002. The block-like behavior of Anatolia envisaged in the modeled and geodetic strain rates, Geophysical Research Letters, Cilt. 29(20), s. 1978. doi:10.1029/2002GL015995
  • [20] Hearn, E.H., Hager, B.H., Reilinger, R.E. 2002. Viscoelastic deformation from North Anatolian Fault Zone earthquakes and the eastern Mediterranean GPS velocity field, Geophysical Research Letters, Cilt. 29(11), s. 1549. doi:10.1029/2002GL014889
  • [21] Provost, A.S., Chery, J., Hassani, R. 2003. 3D mechanical modeling of the GPS velocity field along the North Anatolian fault, Earth and Planetary Science Letters, Cilt. 209, s. 361– 377.
  • [22] Flerit, F., Armijo, R., King, G., Meyer, B., Barka, A. 2003. Slip-partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors, Geophysical Journal International, Cit. 154, s. 1–7.
  • [23] Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., Vernant, P. 2010. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone, Tectonophysics, Cilt. 488, s. 22–30.
  • [24] Kahle, H.G., Cocard, M., Peter, Y., Geiger, A., Reilinger, R., Barka, A., Veis, G. 2000. GPS-derived strain field within the boundary zone of the Eurasian, African, and Arabian plates, Journal of Geophysical Research, Cilt. 105 (B10), s. 23.353–23.370.
  • [25] McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksöz, M.N., Veis, G. 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, Journal of Geophysical Research, Cilt. 105(B3), s. 5695–5719.
  • [26] Nyst, M., Thatcher, W. 2004. New constraints on the active tectonic deformation of the Aegean, Journal of Geophysical Research, Cilt. 109, B11406. doi:10.1029/ 2003JB002830
  • [27] Vernant, P., Reilinger, R., McClusky, S. 2014. Geodetic evidence for low coupling on the Hellenic subduction plate interface, Earth and Planetary Science Letters, Cilt. 385, s. 122–129.
  • [28] Hollenstein, C., Müller, M.D., Geiger, A., Kahle, H.G. 2008. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003, Tectonophysics, Cilt. 449 (1–4), s. 17–40.
  • [29] Aktug, B., Nocquet, J.M., Cingoz, A., Parsons, B., Erkan, Y., England, P., Lenk, O., Gurda, M.A., Kilicoglu, A., Akdeniz, H., Tekgul, A. 2009. Deformation of western Turkey from a combination of permanent and campaign GPS data: Limits to block-like behavior, Journal of Geophysical Research, Cilt. 114, s. 1–22.
  • [30] Floyd, M.A., Billiris, H., Paradissis, D., Veis, G., Avallone, A., Briole, P., McClusky, S., Nocquet, J.M., Palamartchouk, K., Parsons, B., England, P.C. 2010. A new velocity field for Greece: Implications for the kinematics and dynamics of the Aegean, Journal of Geophysical Research, Cilt. 115, B10403.
  • [31] Pamukçu, O., Kahveci, M., Ersay, E.Y., Yurdakul, A., Şalk, M., Sözbilir, H. 2010a. Determination of the kinematic structure of Izmir and surrounding using repeated GPS/GNSS observations: Preliminary Results. 15th General Assembly of Wegener, 14-17 Eylül, İstanbul, 7
  • [32] Pamukçu, O., Yurdakul, A., Kahveci, M., Şalk, M., Gönenç, T., Ersay, E., Ergintav, S., Belgen, A. 2010b. Evaluation of microgravity and GPS/GNSS data together by the network system and a case study in İzmir (Western Turkey). 10th International Multidisciplinary Scientific Geoconference SGEM 2010, 20-16 Haziran, Albena, Bulgaristan, 777-782.
  • [33] Pamukçu, O., Gönenç, T., Çırmık, A., Sındırgı, P., Kaftan, I., Akdemir, Ö. 2015a. Investigation of vertical mass changes in the south of Izmir (Turkey) by monitoring microgravity and GPS/GNSS methods, Journal of Earth System Science, Cilt. 124, No. 1, s. 137–148.
  • [34] Pamukçu, O., Gönenç, T., Çırmık, Y.A., Kahveci, M. 2015b. Investigation of the Sıgacık Bay’s displacement characteristic by using GPS and gravity data in Western Anatolia, Journal of Asian Earth Scince, Cilt. 99, s. 72–84.
  • [35] Çırmık, A. 2014. Determining the deformations in Western Anatolia with GPS and gravity measurements. Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilmleri Enstitüsü, İzmir.
  • [36] Çırmık, A., Pamukçu, O., Akçığ, Z. 2016a. Mass and stress changes in the Menderes Massif (Western Anatolia, Turkey), Journal of Asian Earth Science, Cilt. 131, s. 109-122.
  • [37] Çırmık, A., Özdag, O.C., Doğru, F., Pamuk, E., Gönenç, T., Pamukçu, O., Akgün, M., Arslan, A.T. 2016b. The Soil Behaviours of the GNSS Station, Earth Science, Cilt. 5(5), s. 70-81.
  • [38] Çırmık, A., Pamukçu, O., Gönenç, T., Kahveci, M., Şalk, M., Herring, T. 2017a. Examination of the kinematic structures in İzmir (Western Anatolia) with repeated GPS observations (2009, 2010 and 2011), Journal of African Earth Science, Cilt. 126, s. 1-12.
  • [39] Çırmık, A., Doğru, F., Gönenç, T., Pamukçu, O. 2017b. The stress/Strain analysis of kinematic structure at Gülbahçe Fault and Uzunkuyu Intrusive (İzmir, Turkey), Pure and Applied Geophysics, Cilt. 1-16. DOI 10.1007/s00024-017-1474-5
  • [40] Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Ulusal Deprem İzleme Merkezi, 2014. 24 Mayıs 2014 Gökçeada Açıkları Ege Denizi Depremi Basın Bülteni. http://udim.koeri.boun.edu.tr/Dep remler/onemliler/24052014_1225 TSIKuzeyEgeDeniziDepremi_.pdf (Erişim Tarihi : 05.08.2017)
  • [41] Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), 2014. 24/05/2014 Gökçeada Açıkları Ege Denizi Depremi (Mw= 6.5) Ön raporu. https://www.afad.gov.tr/upload/N ode/3929/xfiles/ege-denizidepremi-on-raporu-r.pdf (Erişim Tarihi : 05.08.2017)
  • [42] Herring, T.A., King, R.W., Floyd, M.A., McClusky, S.C. 2015. Introduction to GAMIT/GLOBK, Release 10.6. Massachusetts Institute of Technology, Cambridge.
  • [43] Amerikan Jeolojik Araştırma Kurumu (USGS) USGS, 2014. M6.9 Aegean Sea Earthquake of 24 May 2014. https://earthquake.usgs.gov/archi ve/product/poster/20140524/us/ 1480722169905/poster.pdf (Erişim Tarihi : 05.08.2017)
  • [44] Kiratzi, A., Tsakiroudi, E., Benetatos, C., Karakaisis, G. 2016. The 24 May 2014 (Mw6. 8) earthquake (North Aegean Trough): Spatiotemporal evolution, source and slip model from teleseismic data, Physics and Chemistry of the Earth, Parts A/B/C, Cilt. 95, s. 85-100.
  • [45] Maden Tetkik ve Arama Genel Müdürlüğü, Türkiye Diri Fay haritası, 2005.
  • [46] Yaltırak, C., Alpar, B., Sakınç, M., Yüce, H., 2000. Origin of the Strait of Çanakkale (Dardanelles): regional tectonics and the Mediterranean–Marmara incursion, Marine Geology, Cilt. 164(3), s. 139-156.
  • [47] Wessel, P., Smith, W.H.F. 1998. New, improved version of the generic mapping tools released, American Geoscience Union, Cilt. 79, s. 579.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA26KN47EP
Bölüm Araştırma Makalesi
Yazarlar

Ayça Çırmık Bu kişi benim

Yayımlanma Tarihi 1 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 20 Sayı: 58

Kaynak Göster

APA Çırmık, A. (2018). 24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 20(58), 230-244.
AMA Çırmık A. 24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ. DEUFMD. Ocak 2018;20(58):230-244.
Chicago Çırmık, Ayça. “24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 20, sy. 58 (Ocak 2018): 230-44.
EndNote Çırmık A (01 Ocak 2018) 24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20 58 230–244.
IEEE A. Çırmık, “24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ”, DEUFMD, c. 20, sy. 58, ss. 230–244, 2018.
ISNAD Çırmık, Ayça. “24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20/58 (Ocak 2018), 230-244.
JAMA Çırmık A. 24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ. DEUFMD. 2018;20:230–244.
MLA Çırmık, Ayça. “24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 20, sy. 58, 2018, ss. 230-44.
Vancouver Çırmık A. 24 MAYIS 2014 GÖKÇEADA AÇIKLARI – EGE DENİZİ DEPREMİNİN (ML=6.5) DEPREM ANI VE SONRASI MEYDANA GETİRDİĞİ YER DEĞİŞTİRMELER VE DEFORMASYONLARIN İRDELENMESİ. DEUFMD. 2018;20(58):230-44.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.