BibTex RIS Kaynak Göster

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF TRANSPIRED SOLAR AIR COLLECTOR COUPLED TO A HEAT EXCHANGER

Yıl 2017, Cilt: 19 Sayı: 57, 998 - 1014, 01.09.2017

Öz

The transpired solar collector uses the solar energy to preheat ventilation air for buildings and agricultural applications. The thermal performance of transpired collector is depending on solar radiation significantly. In this study, the effectiveness of the transpired solar collector coupled to a capillary heat exchanger as a supplementary heating system has been determined for nonsolar conditions. A theoretical and experimental analysis were carried out regarding perforated solar air collector which is coupled to a capillary heating system. Heat transfer effectiveness between the capillary tubes and the solar collector is investigated experimentally for different conditions such as mass flow rates, inlet temperatures. It has been determined that capillary tube heat transfer efficiency varies between 0,45 and 0,77 for different conditions, and the capillary tube system can be suitable supplementary system for transpired solar collector when the solar radiation is insufficient

Kaynakça

  • NREL Bulletin - Solar Buildings Transpired Sola Collectors Ventilating Preheating DOE/GO- 102001-1288, Haziran 2006
  • Shuklaa, A., Nkwetta, D. N., Choa, Y.J., Stevensona, V., P., Jones, P., 2012. A state of art review on the performance of transpired solar collector, Sustainable Energy Reviews, Cilt. 16, s. 3975–3985
  • Hollick J.C. 2003. Unglazed Solar Wall Air EngineeringInc., 200 Wildcat Rd. Downsview, Ontario M3J 2N5, Canada,
  • Kutscher, C.F.,Christensen, C., Barker, solar collectors based on exergetic performance criteria, International Journal of Thermodynamics. Cilt. 13, s. 153-60 G. 1993. Unglazed transpired solar collectors: heat loss theory. ASME Journal of Solar Engineering, Cilt. 115, s. 182–188
  • Kutscher, C. F. 1993. An Investigation of Heat Transfer for Air Flow Through Low Porosity Perforated Plates, University of Colorado, Boulder, 289 sayfa
  • Van Decker, G.W.E.,Hollands, K.G.T., Brunger, A.P. 1996. Heat Exchange effectiveness of unglazed transpired-plate solar collector in 3D flow. In: Goietzburger, A., Luther, J. (Eds.), Proceedings of EuroSun 96, Freiburg, Germany. DGS– Sonnenenergie Verlags GmbH, Munchen, Almanya, s. 130–846
  • Van Decker, G.W.E.,Hollands, K.G.T. 1999. An empirical heat transfer equation for the transpired solar collectors, including no-wind conditions. In: Proceedings of the ISES 99 Solar World Congress, Australia
  • Van Decker, G.W.E., Hollands, K.G.T., Brunger, A.P. 2001. Heat Exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch. Solar Energy, Cilt. 71, s. 33–45
  • Gunnewiek, L.H. Brundrett, E., Badache, M., Hallé, S., Rousse, D. R.,
  • Gunnewiek, L.H. 1996. Flow distribution in unglazed transpired plate solar air heaters of large area, Solar Energy, Cilt. 57, s. 227
  • Leon, M., Kumar, A., S., Leon, M. Augustus. 2007. modeling and thermal performance analysis of unglazed transpired solar collectors, Solar Energy, Cilt. 81, s. 62-75
  • Motahar S, Alemrajabi AA. 2010. AnLi , S., Karava , P. 2014. Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 2:Performance analysis, Solar Energy, Cilt. 102, s. 297–307
  • Li , S., Karava , P., Currie , S., Lin , W. E., Savory, E. 2014. Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 1: Model development and validation, Solar Energy, Cilt. 102, s. 282–296
  • Vasan, N. 2014. Theodore Stathopoulos, Experimental study of wind effects on unglazed transpired collectors, Solar Energy, Cilt. 101, s. 138–149
  • Nowzari, R., Aldabbagh, L.B.Y., Egelioglu, F. 2014. Single and double pass solar air heaters with partially perforated cover and packed mesh, Energy, Cilt. 73, s. 694-702
  • Shen, J., Zhang, X., Yang, T., Tang, L., Cheshmehzangi, A., Wu, Y., Huang, G., Zhong, D., Xu, P., Liu, S. 2016. Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin– fin flow channel for building integration, Applied Energy, Cilt. 168, s. 48–64 Quesada, G., Dutil, experimental investigation of a two- dimensional prototype of a transparent transpired collector, Energy and Buildings 68 (2014) 232–241
  • Janusevicius, K., Streckiene, G., Bielskus, Validation of unglazed transpired solar collector assisted air source heat pump simulation model, Energy Procedia 95 ( 2016 ) 167 – 174 V.,
  • Shams, S.M.N., Mc Keever, M., Mc Cormack, S., Norton, B. Design and experiment of a new solar air heating collector, Energy 100 (2016) 374-383
  • Razak, A.A., Majid, Z.A.A., Azmi, W.H., Ruslan, M.H., Choobchiane , Sh. Najafi, G., Sopian, K. 2016. Review on matrix thermal absorber designs for solar air collector, Renewable and Sustainable Energy Reviews, Cilt. 64, s. 682–693
  • Zomorodian, A., Zamanian M. 2012. Designing and Evaluating an Innovative Solar Air Collector with Transpired Absorber and Cover, Renewable ID 282538
  • Vaziri, R., Ilkan, M., Egelioglu, F. 2015. Experimental performance of perforated glazed solar air heaters and unglazed transpired solar air heater, Solar Energy, Cilt. 119, s. 251–260
  • Zheng, W., Li, B., Zhang, H., You, S., Li, Y., Ye, T. 2016. Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions, Energy, Cilt. 109, s. 781-790
  • Hall, R., Blower, J. 2016. Low- emissivity transpired solar collectors, Energy Procedia, Cilt. 91, s. 56 – 63
  • Croitoru, C. V., Nastase, I., Bode, F. I., Meslem, A. 2016. Thermodynamic investigation on an innovative unglazed transpired solar collector, Solar Energy, Cilt. 131, s. 21–29
  • Eryener D. 2009. Metal Cladding System with a Heat Exchanger System , Türk Patent Enstitüsü
  • Eryener D. and Akhan H., 2012. And Investıgatıon Of Perforated Solar Aır Collector Coupled To A Capıllary Radıant Heatıng System, 9th International Conference on Heat Transfer Fluid Mechanics and Thermodynamics, 16-18 July 2012, Malta
  • Akhan H., 2015. Kılcal Borulu Hava Sızdırmalı Güneş Toplayıcılarının Teorik Ve Deneysel İncelenmesi, (Doktora Tezi), Trakya Universitesi FBE Makina Muhendisligi Anabilim Dali (Tez Yöneticisi : Yrd. Doç. Dr. Doğan ERYENER).
  • Swart, R. H. 1946. Capillary Tube Heat Exchangers, Refrigerating Engineering, Cilt. (Eylül), s. 221-224, 248-249
  • Staebler, L. A. 1948. Theory and Use of a Capillary Tube for Liquid Refrigerant Control, Refrigerating Engineering, Cilt. (Ocak), s. 55-59
  • Hopkins, N. E, 1950. Rating the Restrictor Tube: Method of Determining Flow Capacities For Freon-12 and Freon-22, Journal of the ASRE – Engineering, Cilt. (Kasım), s. 1087- 1094 Refrigerating
  • Whitesel, H. A. 1957. CapillaryTwo- Phase Flow, Part II, Refrigerating Engineering, s. 35-40
  • Cooper, L., C. K. Chu, and W.R. Brishken, 1957, Simple Selection Method for Capillaries Derived from Physical Flow Conditions, Refrigerating Engineering, s.37-41
  • Mikol, E. P. 1963. Adiabatic Single and Two-Phase Flow in Small Bore Tubes, ASHRAE Journal, Cilt. (Kasım), s. 75-86
  • Erth, R. A. 1970. Two-Phase Flow in Refrigeration Capillary Tubes: Analysis and Predition, Doktora Tezi, Purdue Üniversitesi
  • Goldstein, S. D., P.E. 1981. A Computer Simulation Method For Describing Two Phase Flashing Flow in Small Diameter Tubes," ASHRAE Transactions, s. 51-60
  • Sweedyk, J. M. 1981. CapillaryTubes – Their Standardization and Use," ASHRAE Transactions, s. 1069- 1076
  • Pate, M. B. 1982. A Theoretical and Experimental Analysis of Capillary Tube Suction Line Heat Exchangers," Doktora Tezi, Purdue Üniversitesi [39] Glück, B., 1990. Waermevebertragung, Berlin

ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI

Yıl 2017, Cilt: 19 Sayı: 57, 998 - 1014, 01.09.2017

Öz

Hava sızdırmalı güneş toplayıcıları, güneş enerjisini kullanarak, bina ısıtma havalandırması ve kurutma uygulamalarında hava ısıtması yapan sistemlerdir. Hava sızdırmalı güneş toplayıcısının performansı önemli ölçüde güneş ışınım şiddetine bağlıdır. Bu çalışmada, bir tamamlayıcı ısıtma sistemi olarak, kılcal boru ısı değiştiricisi ile desteklenmiş hava sızdırmalı güneş toplayıcısının, güneş ışınımının olmadığı koşullardaki etkinliği belirlenmiştir. Kılcal borulu entegrasyonlu hava sızdırmalı güneş toplayıcısı teorik ve deneysel olarak incelenmiştir. Farklı su debisi, hava debisi ve sıcak su sıcaklıkları için, kılcal borular ile güneş toplayıcısı arasındaki ısı transferi etkinliği deneysel olarak incelenmiştir. Kılcal boru ısı transferi etkinliğinin, farklı koşullar için 0.45 ile 0.77 arasında değiştiği belirlenmiş, güneşin yetersiz olduğu durumlar için kılcal boru sisteminin hava sızdırmalı toplayıcılar için uygun bir tamamlayıcı sistem olabileceği tespiti yapılmıştır

Kaynakça

  • NREL Bulletin - Solar Buildings Transpired Sola Collectors Ventilating Preheating DOE/GO- 102001-1288, Haziran 2006
  • Shuklaa, A., Nkwetta, D. N., Choa, Y.J., Stevensona, V., P., Jones, P., 2012. A state of art review on the performance of transpired solar collector, Sustainable Energy Reviews, Cilt. 16, s. 3975–3985
  • Hollick J.C. 2003. Unglazed Solar Wall Air EngineeringInc., 200 Wildcat Rd. Downsview, Ontario M3J 2N5, Canada,
  • Kutscher, C.F.,Christensen, C., Barker, solar collectors based on exergetic performance criteria, International Journal of Thermodynamics. Cilt. 13, s. 153-60 G. 1993. Unglazed transpired solar collectors: heat loss theory. ASME Journal of Solar Engineering, Cilt. 115, s. 182–188
  • Kutscher, C. F. 1993. An Investigation of Heat Transfer for Air Flow Through Low Porosity Perforated Plates, University of Colorado, Boulder, 289 sayfa
  • Van Decker, G.W.E.,Hollands, K.G.T., Brunger, A.P. 1996. Heat Exchange effectiveness of unglazed transpired-plate solar collector in 3D flow. In: Goietzburger, A., Luther, J. (Eds.), Proceedings of EuroSun 96, Freiburg, Germany. DGS– Sonnenenergie Verlags GmbH, Munchen, Almanya, s. 130–846
  • Van Decker, G.W.E.,Hollands, K.G.T. 1999. An empirical heat transfer equation for the transpired solar collectors, including no-wind conditions. In: Proceedings of the ISES 99 Solar World Congress, Australia
  • Van Decker, G.W.E., Hollands, K.G.T., Brunger, A.P. 2001. Heat Exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch. Solar Energy, Cilt. 71, s. 33–45
  • Gunnewiek, L.H. Brundrett, E., Badache, M., Hallé, S., Rousse, D. R.,
  • Gunnewiek, L.H. 1996. Flow distribution in unglazed transpired plate solar air heaters of large area, Solar Energy, Cilt. 57, s. 227
  • Leon, M., Kumar, A., S., Leon, M. Augustus. 2007. modeling and thermal performance analysis of unglazed transpired solar collectors, Solar Energy, Cilt. 81, s. 62-75
  • Motahar S, Alemrajabi AA. 2010. AnLi , S., Karava , P. 2014. Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 2:Performance analysis, Solar Energy, Cilt. 102, s. 297–307
  • Li , S., Karava , P., Currie , S., Lin , W. E., Savory, E. 2014. Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 1: Model development and validation, Solar Energy, Cilt. 102, s. 282–296
  • Vasan, N. 2014. Theodore Stathopoulos, Experimental study of wind effects on unglazed transpired collectors, Solar Energy, Cilt. 101, s. 138–149
  • Nowzari, R., Aldabbagh, L.B.Y., Egelioglu, F. 2014. Single and double pass solar air heaters with partially perforated cover and packed mesh, Energy, Cilt. 73, s. 694-702
  • Shen, J., Zhang, X., Yang, T., Tang, L., Cheshmehzangi, A., Wu, Y., Huang, G., Zhong, D., Xu, P., Liu, S. 2016. Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin– fin flow channel for building integration, Applied Energy, Cilt. 168, s. 48–64 Quesada, G., Dutil, experimental investigation of a two- dimensional prototype of a transparent transpired collector, Energy and Buildings 68 (2014) 232–241
  • Janusevicius, K., Streckiene, G., Bielskus, Validation of unglazed transpired solar collector assisted air source heat pump simulation model, Energy Procedia 95 ( 2016 ) 167 – 174 V.,
  • Shams, S.M.N., Mc Keever, M., Mc Cormack, S., Norton, B. Design and experiment of a new solar air heating collector, Energy 100 (2016) 374-383
  • Razak, A.A., Majid, Z.A.A., Azmi, W.H., Ruslan, M.H., Choobchiane , Sh. Najafi, G., Sopian, K. 2016. Review on matrix thermal absorber designs for solar air collector, Renewable and Sustainable Energy Reviews, Cilt. 64, s. 682–693
  • Zomorodian, A., Zamanian M. 2012. Designing and Evaluating an Innovative Solar Air Collector with Transpired Absorber and Cover, Renewable ID 282538
  • Vaziri, R., Ilkan, M., Egelioglu, F. 2015. Experimental performance of perforated glazed solar air heaters and unglazed transpired solar air heater, Solar Energy, Cilt. 119, s. 251–260
  • Zheng, W., Li, B., Zhang, H., You, S., Li, Y., Ye, T. 2016. Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions, Energy, Cilt. 109, s. 781-790
  • Hall, R., Blower, J. 2016. Low- emissivity transpired solar collectors, Energy Procedia, Cilt. 91, s. 56 – 63
  • Croitoru, C. V., Nastase, I., Bode, F. I., Meslem, A. 2016. Thermodynamic investigation on an innovative unglazed transpired solar collector, Solar Energy, Cilt. 131, s. 21–29
  • Eryener D. 2009. Metal Cladding System with a Heat Exchanger System , Türk Patent Enstitüsü
  • Eryener D. and Akhan H., 2012. And Investıgatıon Of Perforated Solar Aır Collector Coupled To A Capıllary Radıant Heatıng System, 9th International Conference on Heat Transfer Fluid Mechanics and Thermodynamics, 16-18 July 2012, Malta
  • Akhan H., 2015. Kılcal Borulu Hava Sızdırmalı Güneş Toplayıcılarının Teorik Ve Deneysel İncelenmesi, (Doktora Tezi), Trakya Universitesi FBE Makina Muhendisligi Anabilim Dali (Tez Yöneticisi : Yrd. Doç. Dr. Doğan ERYENER).
  • Swart, R. H. 1946. Capillary Tube Heat Exchangers, Refrigerating Engineering, Cilt. (Eylül), s. 221-224, 248-249
  • Staebler, L. A. 1948. Theory and Use of a Capillary Tube for Liquid Refrigerant Control, Refrigerating Engineering, Cilt. (Ocak), s. 55-59
  • Hopkins, N. E, 1950. Rating the Restrictor Tube: Method of Determining Flow Capacities For Freon-12 and Freon-22, Journal of the ASRE – Engineering, Cilt. (Kasım), s. 1087- 1094 Refrigerating
  • Whitesel, H. A. 1957. CapillaryTwo- Phase Flow, Part II, Refrigerating Engineering, s. 35-40
  • Cooper, L., C. K. Chu, and W.R. Brishken, 1957, Simple Selection Method for Capillaries Derived from Physical Flow Conditions, Refrigerating Engineering, s.37-41
  • Mikol, E. P. 1963. Adiabatic Single and Two-Phase Flow in Small Bore Tubes, ASHRAE Journal, Cilt. (Kasım), s. 75-86
  • Erth, R. A. 1970. Two-Phase Flow in Refrigeration Capillary Tubes: Analysis and Predition, Doktora Tezi, Purdue Üniversitesi
  • Goldstein, S. D., P.E. 1981. A Computer Simulation Method For Describing Two Phase Flashing Flow in Small Diameter Tubes," ASHRAE Transactions, s. 51-60
  • Sweedyk, J. M. 1981. CapillaryTubes – Their Standardization and Use," ASHRAE Transactions, s. 1069- 1076
  • Pate, M. B. 1982. A Theoretical and Experimental Analysis of Capillary Tube Suction Line Heat Exchangers," Doktora Tezi, Purdue Üniversitesi [39] Glück, B., 1990. Waermevebertragung, Berlin
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA43KM64ZS
Bölüm Araştırma Makalesi
Yazarlar

Hacer Akhan Bu kişi benim

Doğan Eryener Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 19 Sayı: 57

Kaynak Göster

APA Akhan, H., & Eryener, D. (2017). ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(57), 998-1014.
AMA Akhan H, Eryener D. ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI. DEUFMD. Eylül 2017;19(57):998-1014.
Chicago Akhan, Hacer, ve Doğan Eryener. “ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, sy. 57 (Eylül 2017): 998-1014.
EndNote Akhan H, Eryener D (01 Eylül 2017) ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 57 998–1014.
IEEE H. Akhan ve D. Eryener, “ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI”, DEUFMD, c. 19, sy. 57, ss. 998–1014, 2017.
ISNAD Akhan, Hacer - Eryener, Doğan. “ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/57 (Eylül 2017), 998-1014.
JAMA Akhan H, Eryener D. ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI. DEUFMD. 2017;19:998–1014.
MLA Akhan, Hacer ve Doğan Eryener. “ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 19, sy. 57, 2017, ss. 998-1014.
Vancouver Akhan H, Eryener D. ISI DEĞİŞTİRİCİLİ HAVA SIZDIRMALI GÜNEŞ TOPLAYICILARININ TEORİK VE DENEYSEL İNCELEMESI. DEUFMD. 2017;19(57):998-1014.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.