IMPROVING THE SPECIFIC RATES OF BREAKAGE OF KAOLEN IN THE BALL MILL BY MICROWAVE DRYING DOI Numarası (DOI Number): 10.21205/deufmd. 2017195522
Yıl 2017,
Cilt: 19 Sayı: 55, 267 - 278, 01.01.2017
Selçuk Samanlı
Özcan Öney
Kamil Geveze
Öz
In this study, grinding tests were carried out to
determine the effects of microwave drying on specific breakage
rate in a ball mill. Kaolen samples, taken from
Balikesir/Duvertepe, were prepared at mono size groups (-
3350+2360 μm, -2360+1700 μm and -1180+850 μm) for grinding
tests performed as dry in Bond ball mill which was run at 70 rpm.
The kaolen samples prepared at mono size groups were dried in
conventional oven (at 105 Co with 4 hours) and microwave oven
(at 850 W with 12 minutes) in order to remove rough moisture
value (1.5%) from the samples prior to grinding. As a result of the
grinding tests it was determined that the specific rates of
breakage at all three mono sized kaolen samples treated with
microwave drying were faster than those of the untreated kaolen
samples.
Kaynakça
- [1] Fuerstenau, D.W., De, A., Kapur, P.C.,
2004. Linear and nonlinear particle
breakage process in comminution
systems, Int. J. Miner. Process., Cilt.74,
s.317-327.
- [2] Rhodes, M. 1998. Introduction to
particle technology, Wiley, Chichester,
UK.
- [3] Özkan, A., Ünal, M., Kekeç, B. 2006.
Mikrodalga ön işleminin traverten ve
mermerin kırılma hızına ve ultrasonik
özelliklerine etkisi, S.Ü. Müh. Mim. Fak.
Derg., Cilt.21, s.143-152.
- [4] Güngör, A. 1998. Grindability of
Microwave-heated Ores, M.Sc. Thesis,
The Graduate School of Natural and
Applied Sciences of METU, Ankara.
- [5] Whittles, D.N., Kingman, S.W.,
Reddish D.J. 2003. Application of
numerical modeling for prediction of
the influence of power density on
microwave assisted breakage, Int. J.
Miner. Process., Cilt.68, 71-91.
- [6] Kingman, S.W., Jackson, K., Cumbane
A., Bradshaw, S.M., Rowson, N.A. 2004.
Greenwood R., Recent developments in
microwave-assisted comminution, Int. J.
Miner. Process., Cilt.74, , s.71-83.
- [7] Kingman, S.W. 1999. The Influence
of microwave radiation on the
comminution and beneficiation of
minerals. Ph.D. thesis. University of
Birmingham, UK.
- [8] Wang, Y., Forssberg, E., Svensson, M.
2000. Microwave assisted communition
and liberation of minerals, Proceedings
of the 8th Int. Min. Process. Symp.,
Balkema, Rotterdam, s.3-9.
- [9] Rao, K.J., Vaidhyanathan, B., Ganguli,
M., Ramakrishnan, P.A. 1999. Synthesis
of inorganic solids using microwaves,
Chem. Mater., Cilt.11, s.882-895.
- [10] Schiffmann, R.F. 1995.
Commercializing Microwave Ssystems:
Path to Success or Failure. Microwaves:
Theory and Application in Material
Processing, 111. In: Clark, D.E., Folz,
D.C., Oda, SJ., Silberglit, R. (eds.),
Ceramic Transc., Cilt.59.
- [11] Haque, K.E. 1999. Microwave
Energy for Mineral Treatment
Processes-a Brief Review, International
Journal of Mineral Processing, Cilt.57,
s.1-24.
- [12] Jones, D.A, Lelyveld, T.P.,
Mavrofidis, S.D., Kingman, S.W., Miles,
N.M. 2002. Microwave Heating
Applications in Environmental
Engineering-A review, Resources,
Conservation and Recycling, Cilt.34, s.75-
90.
- [13] Wang, Y., Forrsberg, E. 2000.
Microwave assisted comminution and
liberation of minerals, Mineral
Processing on the Verge of the 21st
Century, Özbayoğlu et al. (eds),
Rotterdam.
- [14] Lester, E., Kingman, S. 2004. The
effect of microwave pre-heating on five
different coals, Fuel, Cilt.83, s.1941-
1947.
- [15] Kingman, S.W, Rowson, N.A. 2000.
The Effect of Microwave Radiation on
the Magnetic Properties of Minerals,
Journal of Microwave Power and
Electromagnetic Energy, Cilt.35, s.144-
150.
- [16] Toraman, O.Y., Depci, T. 2007.
Kömürde mikrodalga ile önişlem
uygulamaları, Madencilik, Cilt.46, Sayı.3,
s.43-53.
- [17] Marland, S., Han, B., Merchant, A.,
Rowson, N. 2000. The effect of
microwave radiation on coal
grindability, Fuel, Cilt.79, s.1283-1288.
- [18] Marland, S., Merchant, A., Rowson,
N. 2001. Dielectric properties of coal,
Fuel, Cilt.80, s.1839-1849.
- [19] Elsamak, G.G., Oztas, N.A., Yürüm, Y.
2003. Chemical desulfurization of
Turkish Cayirhan lignite with HI using
microwave and thermal energy, Fuel,
Cilt.82, s.531-537.
- [20] Gümüşderelioğlu, M., Kaynak. G.
2012. Mikrodalgalar ve Uygulamaları,
Bilim ve Teknik, Temmuz, s.38-42.
- [21] Uslu, T., Atalay, U. 2003. Microwave
heating of coal for enhanced magnetic removal of pyrite, Fuel Process Technol,
Cilt.85, s.21-29.
- [22] Kingman, S.W., Vorster, W.,
Rowson, NA. 2000. The influence of
mineralogy on microwave assisted
grinding, Miner Eng., Cilt.13, s.313-327.
- [23] Olubambi, P.A., Potgieter, J.H.,
Hwang, J.Y., Ndlovu, S. 2007. Influence of
microwave heating on the processing
and dissolution behavior of low-grade
complex sulphide ores,
Hydrometallurgy, Cilt.89, s.127-135.
- [24] Jones, D.A., Kingman, S.W., Whittles,
D.N., Lowndes, I.S. 2005. Understanding
microwave assisted breakage, Miner
Eng., Cilt.18, s.659-669.
- [25] Amankwah, R.K., Khan, A.U.,
Pickles, C.A., Yen, W.T. 2005. Improved
grindability and gold liberation by
microwave pretreatment of a
freemilling gold ore, Miner Process Extr
Metall, Cilt.114, s.30-36.
- [26] Chen, T.T., Dutrizac, J.E., Haque,
K.E., Wyslouzil, W., Kashyap, S. 1984.
The relative transparency of minerals to
microwave radiation, Can. Metall. Q.,
Cilt.23, s.349-51.
- [27] Roberts, E.J. 1950. The probability
theory of wet ball milling and its
applications, Trans. SME/AIME, Cilt.187,
s.267-272.
- [28] Bowdish, F.K. 1960. Theorical and
experimental studies of kinetics of
grinding in a ball mill, Trans.
SME/AIME, Cilt.217, s.194-202.
- [29] Lynch, A.J., Whiten, W.J.,
Narayanan, S.S. 1986. Ball mill models:
Their evaluation and present status,
Advances in Mineral Processing,
SME/AIME Pub., Littleton, CO., s.48-66.
- [30] Klimpel, R.R., Austin, L.G. 1970.
Determination of selection for breakage
functions in the batch grinding equation
by nonlinear optimization, Ind. Eng.
Chem. Fundam, Cilt.9, s.230-237.
- [31] Austin, L.G., Klimpel, R.R., Luckie,
P.T. 1984. The process engineering of
size reduction: ball milling, SME-AIME,
New York, s.561.
- [32] Anon a. 2014. mindat.org-the
mineral and locality database,
http://www.mindat.org/
- [33] Akıncı, Ö. 1967. Seramik Killeri ve
Jeolojisi, MTA, Ankara, Sayı.71, s.1-12.
- [34] Çelik, H., Samanlı, S., Öney, Ö., Can,
Y. 2015. Uşak Yöresi (Paçacıoğlu Köyü)
Kaolenitik Kil Yataklarının Karakteristik
Özelliklerinin Araştırılması, 9.
Uluslararası Endüstriyel Hammaddeler
Sempozyumu Bildiriler Kitabı, 14-15
Mayıs, İzmir-Türkiye, s.117-124
MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ
Yıl 2017,
Cilt: 19 Sayı: 55, 267 - 278, 01.01.2017
Selçuk Samanlı
Özcan Öney
Kamil Geveze
Öz
Bu çalışmada; Balıkesir/Düvertepe’den alınan kaolen
numunesi üzerinde dar tane boyut gruplarında (-3350+2360 μm,
-2360+1700 μm ve -1180+850 μm) mikrodalga kurutmanın özgül
kırılma hızına olan etkisini belirlemeye yönelik öğütme testleri
yapılmıştır. Öğütme testleri Bond tipi bilyalı değirmende 70
dev/dak ile kuru olarak gerçekleştirilmiştir. Deneylerde kullanılan
kaolen numunesi dar tane boyut gruplarında etüvde (105 oC’ de 4
saat) ve mikrodalga fırında (850 W’ da 12 dk) kurutulmuş ve
kaba nem değeri (%1,5) öğütme öncesi numunelerden
uzaklaştırılmıştır. Sonuçta; her üç dar tane boyut grubunda da,
mikrodalga işleme tabi tutulmuş kaolen numunesinin
konvansiyonel olarak etüvde kurutulmuş kaolen numunesine
kıyasla kırılma hızlarında belirgin artış olduğu belirlenmiştir.
Kaynakça
- [1] Fuerstenau, D.W., De, A., Kapur, P.C.,
2004. Linear and nonlinear particle
breakage process in comminution
systems, Int. J. Miner. Process., Cilt.74,
s.317-327.
- [2] Rhodes, M. 1998. Introduction to
particle technology, Wiley, Chichester,
UK.
- [3] Özkan, A., Ünal, M., Kekeç, B. 2006.
Mikrodalga ön işleminin traverten ve
mermerin kırılma hızına ve ultrasonik
özelliklerine etkisi, S.Ü. Müh. Mim. Fak.
Derg., Cilt.21, s.143-152.
- [4] Güngör, A. 1998. Grindability of
Microwave-heated Ores, M.Sc. Thesis,
The Graduate School of Natural and
Applied Sciences of METU, Ankara.
- [5] Whittles, D.N., Kingman, S.W.,
Reddish D.J. 2003. Application of
numerical modeling for prediction of
the influence of power density on
microwave assisted breakage, Int. J.
Miner. Process., Cilt.68, 71-91.
- [6] Kingman, S.W., Jackson, K., Cumbane
A., Bradshaw, S.M., Rowson, N.A. 2004.
Greenwood R., Recent developments in
microwave-assisted comminution, Int. J.
Miner. Process., Cilt.74, , s.71-83.
- [7] Kingman, S.W. 1999. The Influence
of microwave radiation on the
comminution and beneficiation of
minerals. Ph.D. thesis. University of
Birmingham, UK.
- [8] Wang, Y., Forssberg, E., Svensson, M.
2000. Microwave assisted communition
and liberation of minerals, Proceedings
of the 8th Int. Min. Process. Symp.,
Balkema, Rotterdam, s.3-9.
- [9] Rao, K.J., Vaidhyanathan, B., Ganguli,
M., Ramakrishnan, P.A. 1999. Synthesis
of inorganic solids using microwaves,
Chem. Mater., Cilt.11, s.882-895.
- [10] Schiffmann, R.F. 1995.
Commercializing Microwave Ssystems:
Path to Success or Failure. Microwaves:
Theory and Application in Material
Processing, 111. In: Clark, D.E., Folz,
D.C., Oda, SJ., Silberglit, R. (eds.),
Ceramic Transc., Cilt.59.
- [11] Haque, K.E. 1999. Microwave
Energy for Mineral Treatment
Processes-a Brief Review, International
Journal of Mineral Processing, Cilt.57,
s.1-24.
- [12] Jones, D.A, Lelyveld, T.P.,
Mavrofidis, S.D., Kingman, S.W., Miles,
N.M. 2002. Microwave Heating
Applications in Environmental
Engineering-A review, Resources,
Conservation and Recycling, Cilt.34, s.75-
90.
- [13] Wang, Y., Forrsberg, E. 2000.
Microwave assisted comminution and
liberation of minerals, Mineral
Processing on the Verge of the 21st
Century, Özbayoğlu et al. (eds),
Rotterdam.
- [14] Lester, E., Kingman, S. 2004. The
effect of microwave pre-heating on five
different coals, Fuel, Cilt.83, s.1941-
1947.
- [15] Kingman, S.W, Rowson, N.A. 2000.
The Effect of Microwave Radiation on
the Magnetic Properties of Minerals,
Journal of Microwave Power and
Electromagnetic Energy, Cilt.35, s.144-
150.
- [16] Toraman, O.Y., Depci, T. 2007.
Kömürde mikrodalga ile önişlem
uygulamaları, Madencilik, Cilt.46, Sayı.3,
s.43-53.
- [17] Marland, S., Han, B., Merchant, A.,
Rowson, N. 2000. The effect of
microwave radiation on coal
grindability, Fuel, Cilt.79, s.1283-1288.
- [18] Marland, S., Merchant, A., Rowson,
N. 2001. Dielectric properties of coal,
Fuel, Cilt.80, s.1839-1849.
- [19] Elsamak, G.G., Oztas, N.A., Yürüm, Y.
2003. Chemical desulfurization of
Turkish Cayirhan lignite with HI using
microwave and thermal energy, Fuel,
Cilt.82, s.531-537.
- [20] Gümüşderelioğlu, M., Kaynak. G.
2012. Mikrodalgalar ve Uygulamaları,
Bilim ve Teknik, Temmuz, s.38-42.
- [21] Uslu, T., Atalay, U. 2003. Microwave
heating of coal for enhanced magnetic removal of pyrite, Fuel Process Technol,
Cilt.85, s.21-29.
- [22] Kingman, S.W., Vorster, W.,
Rowson, NA. 2000. The influence of
mineralogy on microwave assisted
grinding, Miner Eng., Cilt.13, s.313-327.
- [23] Olubambi, P.A., Potgieter, J.H.,
Hwang, J.Y., Ndlovu, S. 2007. Influence of
microwave heating on the processing
and dissolution behavior of low-grade
complex sulphide ores,
Hydrometallurgy, Cilt.89, s.127-135.
- [24] Jones, D.A., Kingman, S.W., Whittles,
D.N., Lowndes, I.S. 2005. Understanding
microwave assisted breakage, Miner
Eng., Cilt.18, s.659-669.
- [25] Amankwah, R.K., Khan, A.U.,
Pickles, C.A., Yen, W.T. 2005. Improved
grindability and gold liberation by
microwave pretreatment of a
freemilling gold ore, Miner Process Extr
Metall, Cilt.114, s.30-36.
- [26] Chen, T.T., Dutrizac, J.E., Haque,
K.E., Wyslouzil, W., Kashyap, S. 1984.
The relative transparency of minerals to
microwave radiation, Can. Metall. Q.,
Cilt.23, s.349-51.
- [27] Roberts, E.J. 1950. The probability
theory of wet ball milling and its
applications, Trans. SME/AIME, Cilt.187,
s.267-272.
- [28] Bowdish, F.K. 1960. Theorical and
experimental studies of kinetics of
grinding in a ball mill, Trans.
SME/AIME, Cilt.217, s.194-202.
- [29] Lynch, A.J., Whiten, W.J.,
Narayanan, S.S. 1986. Ball mill models:
Their evaluation and present status,
Advances in Mineral Processing,
SME/AIME Pub., Littleton, CO., s.48-66.
- [30] Klimpel, R.R., Austin, L.G. 1970.
Determination of selection for breakage
functions in the batch grinding equation
by nonlinear optimization, Ind. Eng.
Chem. Fundam, Cilt.9, s.230-237.
- [31] Austin, L.G., Klimpel, R.R., Luckie,
P.T. 1984. The process engineering of
size reduction: ball milling, SME-AIME,
New York, s.561.
- [32] Anon a. 2014. mindat.org-the
mineral and locality database,
http://www.mindat.org/
- [33] Akıncı, Ö. 1967. Seramik Killeri ve
Jeolojisi, MTA, Ankara, Sayı.71, s.1-12.
- [34] Çelik, H., Samanlı, S., Öney, Ö., Can,
Y. 2015. Uşak Yöresi (Paçacıoğlu Köyü)
Kaolenitik Kil Yataklarının Karakteristik
Özelliklerinin Araştırılması, 9.
Uluslararası Endüstriyel Hammaddeler
Sempozyumu Bildiriler Kitabı, 14-15
Mayıs, İzmir-Türkiye, s.117-124