BibTex RIS Kaynak Göster

THE EFFECT OF SYNTHESIS CONDITIONS AND ZINC PRECURSOR ON THE GAS PERMEATION PROPERTIES OF ZIF-L MEMBRANES

Yıl 2016, Cilt: 18 Sayı: 54, 333 - 349, 01.09.2016

Öz

In this study, ZIF-L based crystals and membranes were synthesized with different zinc precursors at different synthesis conditions. The determination of the permeation and ideal selectivities for He, N2 and CO2 gases was performed with the stynthesized membranes. Gas permeation values obtained in the 0.3-2x10-6 mol/m2.s.P range increased with increasing synthesis temperature and by using zinc chloride instead of zinc nitrate. The membrane synthesized in the diffusion cell possessed lower gas permeance values compared to the one sytnesized with vacuum filtration-secondary growth method. The membrane synthsized with zinc chloride in the diffusion cell showed optimum performance in gas permation and ideal selectivity considering the synthesis conditions used in the context of this study

Kaynakça

  • Kuppler RJ, DJ Timmons, Q-R Fang, J-R Li, TA Makal, MD Young, D Yuan, D Zhao, W Zhuang, H-C Zhou. Potential applications of metal-organic frameworks, Coordination Chemistry Reviews, Cilt. 253, 2009, s. 3042-3066.
  • Jiang D, AD Burrows, Y Xiong, KJ Edler. Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine, Journal of Materials Chemistry A, Cilt. 1, 2013, s. 5497.
  • Li W, Y Zhang, Q Li, G Zhang. Metal−organic framework composite membranes: Synthesis and separation applications, Chemical Engineering Science, Cilt. 135, 2015, s. 232- 257.
  • McGuire CV, RS Forgan. The surface chemistry of metal-organic frameworks, Chemical Communications (Camb), Cilt. 51, 2015, s. 5199-5217.
  • D'Alessandro DM, B Smit, JR Long. Carbon dioxide capture: prospects for new materials, Angewandte Chemie International Edition in English, Cilt. 49, 2010, s. 6058-6082.
  • Chen XY, H Vinh-Thang, AA Ramirez, D Rodrigue, S Kaliaguine. Membrane gas separation technologies for biogas upgrading, RSC Advances, Cilt. 5, 2015, s. 24399-24448.
  • Mulder M, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Netherlands, 1996.
  • Huang A, Y Chen, Q Liu, N Wang, J Jiang, J Caro. Synthesis of highly hydrophobic and permselective metal–organic framework Zn(BDC)(TED)0.5 membranes for H2/CO2 separation, Journal of Membrane Science, Cilt. 454, 2014, s. 126-132.
  • Tanh Jeazet HB, C Staudt, C Janiak. Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Transactions, Cilt. 41, 2012, s. 14003-14027.
  • Peng Y, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, Cilt. 346, 2014, s. 1356-1359.
  • Gao F, Y Li, Z Bian, J Hu, H Liu. Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO2 capture in the presence of water, Journal of Materials Chemistry A, Cilt. 3, 2015, s. 8091-8097.
  • Wang X, P Huang, P Yu, L Yang, L Mao. Rapid and Cost-Effective Synthesis of Nanosized Zeolitic Imidazolate Framework-7 withN,N′-Dimethylformamide as Solvent and Metal Acetate Salt as Metal Source, ChemPlusChem, Cilt. 79, 2014, s. 907-913.
  • Yao J, M He, H Wang. Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks, CrystEngComm, Cilt. 17, 2015, s. 4970-4976.
  • He M, J Yao, Q Liu, Z Zhong, H Wang. Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12, Dalton Transactions, Cilt. 42, 2013, s. 16608-16613.
  • Chen B, Z Yang, Y Zhu, Y Xia. Zeolitic imidazolate framework materials: recent progress in synthesis and applications, Journal of Materials Chemistry A, Cilt. 2, 2014, s. 16811-16831.
  • Sánchez-Laínez J, B Zornoza, Á Mayoral, Á Berenguer-Murcia, D Cazorla-Amorós, C Téllez, J Coronas. Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes, Journal of Materials Chemistry A, Cilt. 3, 2015, s. 6549-6556.
  • Yang A-C, T-Y Wang, C-A Dai, D-Y Kang. Incorporation of single-walled aluminosilicate nanotubes for the control of crystal size and porosity of zeolitic imidazolate framework-L, CrystEngComm, Cilt. 2016, s.
  • Lee W-C, H-T Chien, Y Lo, H-C Chiu, T-p Wang, D-Y Kang. Synthesis of Zeolitic Imidazolate Framework Core–Shell Nanosheets Using Zinc-Imidazole Pseudopolymorphs, ACS Applied Materials & Interfaces, Cilt. 7, 2015, s. 18353-18361.
  • Chen R, J Yao, Q Gu, S Smeets, C Baerlocher, H Gu, D Zhu, W Morris, OM Yaghi, H Wang. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption, Chemical Communications (Camb), Cilt. 49, 2013, s. 9500-9502.
  • Low Z-X, J Yao, Q Liu, M He, Z Wang, AK Suresh, J Bellare, H Wang. Crystal Transformation in Zeolitic-Imidazolate Framework, Crystal Growth & Design, Cilt. 14, 2014, s. 6589-6598.
  • Zhong Z, J Yao, R Chen, Z Low, M He, JZ Liu, H Wang. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties, Journal of Materials Chemistry A, Cilt. 3, 2015, s. 15715-15722.
  • Kwon HT, HK Jeong. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation, Journal of the American Chemical Society, Cilt. 135, 2013, s. 10763-10768.
  • He M, J Yao, L Li, Z Zhong, F Chen, H Wang. Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method, Microporous and Mesoporous Materials, Cilt. 179, 2013, s. 10-16.
  • Li Y, LH Wee, A Volodin, JA Martens, IF Vankelecom. Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method, Chemical Communications (Camb), Cilt. 51, 2015, s. 918-920.
  • Biswal BP, A Bhaskar, R Banerjee, UK Kharul. Selective interfacial synthesis of metal- organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation, Nanoscale, Cilt. 7, 2015, s. 7291-7298.
  • Yao J, D Dong, D Li, L He, G Xu, H Wang. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate, Chemical Communications (Camb), Cilt. 47, 2011, s. 2559-2561.
  • Hu Y, J Wei, Y Liang, H Zhang, X Zhang, W Shen, H Wang. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes, Angewandte Chemie International Edition in English, Cilt. 2015, s.
  • Huang K, Q Li, G Liu, J Shen, K Guan, W Jin. A ZIF-71 Hollow Fiber Membrane Fabricated by Contra-Diffusion, ACS Applied Materials & Interfaces, Cilt. 7, 2015, s. 16157- 16160.
  • Nordin NAHM, AF Ismail, A Mustafa, RS Murali, T Matsuura. The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane, RSC Advances, Cilt. 4, 2014, s. 52530-52541.

SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ

Yıl 2016, Cilt: 18 Sayı: 54, 333 - 349, 01.09.2016

Öz

Bu çalışmada farklı sentez koşullarında ve iki farklı çinko tuzu ile ZIF-L bazlı kristaller ve membranlar sentezlenmiştir. Sentezlenen membranların He, N2 ve CO2 gazı geçirgenliği ve ideal seçicilik ölçümleri gerçekleştirilmiştir. 0,3-2x10-6 mol/m2.s.P aralığında elde edilen gaz geçirgenliği değerleri artan sentez sıcaklığı ve çinko nitrat yerine çinko klorür kullanımı ile artmıştır. Difüzyon hücresi ile sentezlenen membran ise vakum filtrasyon-ikincil büyüme ile sentezlenen membrana göre daha düşük gaz geçirgenliği değerleri göstermiştir. Çalışma kapsamında kullanılan sentez koşullarında difüzyon hücre sisteminde çinko klorürür ile sentezlenen membranın gaz geçirgenliği ve seçiciliğinde optimum performansa sahip olduğu tespit edilmiştir

Kaynakça

  • Kuppler RJ, DJ Timmons, Q-R Fang, J-R Li, TA Makal, MD Young, D Yuan, D Zhao, W Zhuang, H-C Zhou. Potential applications of metal-organic frameworks, Coordination Chemistry Reviews, Cilt. 253, 2009, s. 3042-3066.
  • Jiang D, AD Burrows, Y Xiong, KJ Edler. Facile synthesis of crack-free metal–organic framework films on alumina by a dip-coating route in the presence of polyethylenimine, Journal of Materials Chemistry A, Cilt. 1, 2013, s. 5497.
  • Li W, Y Zhang, Q Li, G Zhang. Metal−organic framework composite membranes: Synthesis and separation applications, Chemical Engineering Science, Cilt. 135, 2015, s. 232- 257.
  • McGuire CV, RS Forgan. The surface chemistry of metal-organic frameworks, Chemical Communications (Camb), Cilt. 51, 2015, s. 5199-5217.
  • D'Alessandro DM, B Smit, JR Long. Carbon dioxide capture: prospects for new materials, Angewandte Chemie International Edition in English, Cilt. 49, 2010, s. 6058-6082.
  • Chen XY, H Vinh-Thang, AA Ramirez, D Rodrigue, S Kaliaguine. Membrane gas separation technologies for biogas upgrading, RSC Advances, Cilt. 5, 2015, s. 24399-24448.
  • Mulder M, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Netherlands, 1996.
  • Huang A, Y Chen, Q Liu, N Wang, J Jiang, J Caro. Synthesis of highly hydrophobic and permselective metal–organic framework Zn(BDC)(TED)0.5 membranes for H2/CO2 separation, Journal of Membrane Science, Cilt. 454, 2014, s. 126-132.
  • Tanh Jeazet HB, C Staudt, C Janiak. Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Transactions, Cilt. 41, 2012, s. 14003-14027.
  • Peng Y, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, Cilt. 346, 2014, s. 1356-1359.
  • Gao F, Y Li, Z Bian, J Hu, H Liu. Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO2 capture in the presence of water, Journal of Materials Chemistry A, Cilt. 3, 2015, s. 8091-8097.
  • Wang X, P Huang, P Yu, L Yang, L Mao. Rapid and Cost-Effective Synthesis of Nanosized Zeolitic Imidazolate Framework-7 withN,N′-Dimethylformamide as Solvent and Metal Acetate Salt as Metal Source, ChemPlusChem, Cilt. 79, 2014, s. 907-913.
  • Yao J, M He, H Wang. Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks, CrystEngComm, Cilt. 17, 2015, s. 4970-4976.
  • He M, J Yao, Q Liu, Z Zhong, H Wang. Toluene-assisted synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12, Dalton Transactions, Cilt. 42, 2013, s. 16608-16613.
  • Chen B, Z Yang, Y Zhu, Y Xia. Zeolitic imidazolate framework materials: recent progress in synthesis and applications, Journal of Materials Chemistry A, Cilt. 2, 2014, s. 16811-16831.
  • Sánchez-Laínez J, B Zornoza, Á Mayoral, Á Berenguer-Murcia, D Cazorla-Amorós, C Téllez, J Coronas. Beyond the H2/CO2 upper bound: one-step crystallization and separation of nano-sized ZIF-11 by centrifugation and its application in mixed matrix membranes, Journal of Materials Chemistry A, Cilt. 3, 2015, s. 6549-6556.
  • Yang A-C, T-Y Wang, C-A Dai, D-Y Kang. Incorporation of single-walled aluminosilicate nanotubes for the control of crystal size and porosity of zeolitic imidazolate framework-L, CrystEngComm, Cilt. 2016, s.
  • Lee W-C, H-T Chien, Y Lo, H-C Chiu, T-p Wang, D-Y Kang. Synthesis of Zeolitic Imidazolate Framework Core–Shell Nanosheets Using Zinc-Imidazole Pseudopolymorphs, ACS Applied Materials & Interfaces, Cilt. 7, 2015, s. 18353-18361.
  • Chen R, J Yao, Q Gu, S Smeets, C Baerlocher, H Gu, D Zhu, W Morris, OM Yaghi, H Wang. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption, Chemical Communications (Camb), Cilt. 49, 2013, s. 9500-9502.
  • Low Z-X, J Yao, Q Liu, M He, Z Wang, AK Suresh, J Bellare, H Wang. Crystal Transformation in Zeolitic-Imidazolate Framework, Crystal Growth & Design, Cilt. 14, 2014, s. 6589-6598.
  • Zhong Z, J Yao, R Chen, Z Low, M He, JZ Liu, H Wang. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties, Journal of Materials Chemistry A, Cilt. 3, 2015, s. 15715-15722.
  • Kwon HT, HK Jeong. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation, Journal of the American Chemical Society, Cilt. 135, 2013, s. 10763-10768.
  • He M, J Yao, L Li, Z Zhong, F Chen, H Wang. Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method, Microporous and Mesoporous Materials, Cilt. 179, 2013, s. 10-16.
  • Li Y, LH Wee, A Volodin, JA Martens, IF Vankelecom. Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method, Chemical Communications (Camb), Cilt. 51, 2015, s. 918-920.
  • Biswal BP, A Bhaskar, R Banerjee, UK Kharul. Selective interfacial synthesis of metal- organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation, Nanoscale, Cilt. 7, 2015, s. 7291-7298.
  • Yao J, D Dong, D Li, L He, G Xu, H Wang. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate, Chemical Communications (Camb), Cilt. 47, 2011, s. 2559-2561.
  • Hu Y, J Wei, Y Liang, H Zhang, X Zhang, W Shen, H Wang. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes, Angewandte Chemie International Edition in English, Cilt. 2015, s.
  • Huang K, Q Li, G Liu, J Shen, K Guan, W Jin. A ZIF-71 Hollow Fiber Membrane Fabricated by Contra-Diffusion, ACS Applied Materials & Interfaces, Cilt. 7, 2015, s. 16157- 16160.
  • Nordin NAHM, AF Ismail, A Mustafa, RS Murali, T Matsuura. The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane, RSC Advances, Cilt. 4, 2014, s. 52530-52541.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA79FB26DT
Bölüm Araştırma Makalesi
Yazarlar

Hüsnü Arda Yurtsever Bu kişi benim

Elif Satık Bu kişi benim

Berna Topuz Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 18 Sayı: 54

Kaynak Göster

APA Yurtsever, H. A., Satık, E., & Topuz, B. (2016). SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(54), 333-349.
AMA Yurtsever HA, Satık E, Topuz B. SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ. DEUFMD. Eylül 2016;18(54):333-349.
Chicago Yurtsever, Hüsnü Arda, Elif Satık, ve Berna Topuz. “SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, sy. 54 (Eylül 2016): 333-49.
EndNote Yurtsever HA, Satık E, Topuz B (01 Eylül 2016) SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 54 333–349.
IEEE H. A. Yurtsever, E. Satık, ve B. Topuz, “SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ”, DEUFMD, c. 18, sy. 54, ss. 333–349, 2016.
ISNAD Yurtsever, Hüsnü Arda vd. “SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/54 (Eylül 2016), 333-349.
JAMA Yurtsever HA, Satık E, Topuz B. SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ. DEUFMD. 2016;18:333–349.
MLA Yurtsever, Hüsnü Arda vd. “SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 18, sy. 54, 2016, ss. 333-49.
Vancouver Yurtsever HA, Satık E, Topuz B. SENTEZ KOŞULLARININ VE ÇİNKO ÖNCÜLÜNÜN ZIF-L MEMBRANLARININ GAZ GEÇİRGENLİK ÖZELLİKLERİNE ETKİSİ. DEUFMD. 2016;18(54):333-49.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.