BibTex RIS Kaynak Göster

THE EFFECT OF PRETREATMENT OF COPPER SUBSTRATE TO THE QUALITY OF SINGLE LAYER GRAPHENE

Yıl 2016, Cilt: 18 Sayı: 54, 548 - 561, 01.09.2016

Öz

Among the various methods suggested to synthesize uniform and wide graphene sheets, growing graphene on copper or nickel substrate via Chemical Vapor Deposition (CVD) is the most preferred. Recent works have been demonstrated that defect free formation of large mono-layer graphene critically depends on the copper's crystalline structure. Moreover the substrate surface state is another important parameter involving an appropriate pretreatment. In this study, 25 μm thick copper substrate has been prepared with three different process; standart cleaning, electro-polishing and annealing. Then graphene growth has been performed using methane (CH4) and hydrogen (H2) gases. Structure and purity of copper foil have been determined using XRD and XRF techniques. In order to determine the graphene properties, the upper surface and the lower surface of copper substrate have been examined using Confocal Raman. At the end of the work, large single layer graphene has been observed on the copper substrate pretreated by electro-polishing, while multilayer graphene has been observed on substrates pretreated by the other methods

Kaynakça

  • Geim AK., Novoselov KS. The Rise of Graphene, Nature Materials, Cilt. 6, 2007, s. 183- 191.
  • Slonczewski JC, Weiss PR, Band Structure of Graphite, Phys. Rev. Cilt. 109, 1958, s.272- 279.
  • Greshnov AA, Room-Temperature Quantum Hall Effect in Graphene: The Role of the Two-Dimensional Nature of Phonos, Journal of Physics: Conference Series, Cilt. 568, 2014 s.1-5.
  • Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK, Room-Temperature Quantum Hall Effect in Graphene, Science Cilt. 315, 2007, s.1379.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva, IV, Firsov, AA, Electric Field Effect in Atomically Thin Carbon Films, Science, Cilt. 306, 2004, s.666-669.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Two-Dimensional Gas of Massless Dirac Fermions in Graphene, Nature, Cilt. 438, 2005, s.197-200.
  • Lee C, Wei X, Kysar JW, Hone J, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, Cilt. 321, 2008, s.385-388.
  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., Cilt. 8, 2008, s.902-907.
  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS, Detection of Individual Gas Molecules Adsorbed on Graphene, Nature Materials, Cilt. 6, 2007, s.652-655.
  • Pearce R, Iakimov T, Andersson M, Hultman L, Spetz AL, Yakimova R, Epitaxially Grown Graphene Based Gas Sensors for Ultra Sensitive NO(2) Detection, Sensors and actuators. B, Chemical, Cilt. 155(2) 2011, s.451-455.
  • Fowler, JD, Allen, MJ, Tung, VC, Yang, Y, Kaner, RB, Weller, BH, Practical Chemical Sensors from Chemically Derived Graphene, ACS Nano, Cilt. 3(2), 2009, s.301-306.
  • Wang X, Zhi L, Mullen K. Transparent, Conductive Graphene Electrodes for Dye- Sensitized Solar Cells, Nano Letters, Cilt. 8(1), 2008, s.323-327.
  • Chen JH, Ishigami M, Jang C, Hines DR, Fuhrer MS, Williams ED, Printed Graphene Circuits, Adv. Mater., Cilt. 19(21), 2007, 3623–3627.
  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK, Fine Structure Constant Defines Visual Transparency of Graphene. Science Cilt.320(5881), 2008, s.1308.
  • Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen, YR, Gate-Variable Optical Transitions in Graphene, Science Cilt. 320(5873), 2008, s.206–209.
  • Xia F, Mueller T, Lin Y-M, Valdes-Garcia A, Avouris P, Ultrafast Graphene Photodedector, Nature Nanotechnology, Cilt. 4, 009, s.839-843.
  • Mueller T, Xia F, Avouris, P, Graphene Photodedectors for High-Speed Optical Communications, Nature Photon, Cilt. 4, 2010, s.297-301.
  • Bolotin KI, Sikes KJ, Jiang Z, Klima, M, Fudenberg G, Hone J, Kim P, Stormer HL, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Communications, Cilt 146(9-10), 2008, s.351-355.
  • Du X, Skacho I, Barker A, Andrei EY, Approaching Ballistic Transport in Suspended Graphene, Nature Nanotechnology, Cilt. 3, 2008, s.491-495.
  • Schwierz F, Graphene Transistors, Nature Nanotechnology, Cilt. 5, 2010, s.487-496.
  • Farmer DB, Perebeinos V, Lin Y-M, Dimitrakopoulos C, Avouris P, Charge Trapping and Scattering in Epitaxial Graphene, Phys. Rev. B, Cilt. 84, 2011, s.205417.
  • Xia F, Perebeinos V, Lin Y-M, Wu Y, Avouris P, The Origins and Limits of Metal- Graphene Junction, Nature Nanotechnology, Cilt. 5, 2011, s.179-184.
  • Xia F, Farmer DB, Lin Y-M, Avouris, P, Graphene Field-Effect Transistors with High on/off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Lett., Cilt. 10, 2010, s.715-718.
  • Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM, Ultrathin Planar Graphene Supercapacitors, Nano Lett., Cilt. 11(4), 2011, s.1423-1427.
  • Brownson DAC, Banks CE, Fabricating Supercapacitors: Highlighting the Impact of and Moieties, Chem. Commun. Cilt. 48, 2012, s.1425-1427.
  • Liu C, Yu Z, Neff D, Zhamu A, Jang BZ, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., Cilt. 10(12), 2010, s.14863-4868.
  • Wang G, Shen X, Yao J, Park J, Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries, Carbon, Cilt. 47(8), 2009, s.2049-2053.
  • Yoo EJ, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Lett., Cilt. 8(8), 2008, s.2277-2282.
  • Wu Z-S, Ren W, Feng LX, Cheng H-M, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries, ACS Nano, Cilt. 5(7), 2011, s.5463-5471.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos, SV, Grigorieva IV, Firsov AA, Electric Field Effect in Atomically Thin Carbon Films, Science, Cilt. 306(5696), 2004, s.666-669.
  • Allen MJ, Tung VC, Kaner RB, Honeycomb Carbon: A Review of Graphene, Chem. Rev., Cilt. 110 (1), 2010, s.132-145.
  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., Cilt. 22, 2010, s.3906-3924.
  • Losurdo M, Giangregorio MM, Capezzuto P, Bruno G, Graphene CVD Growth on Copper and Nickel: Role of Hydrogen in Kinetics and Structure, Phys. Chem. Chem. Phys., Cilt. 13, 2011, s.20836-20843.
  • Kumar S, McEvoy N, Kim H-Y, Lee K, Peltekis N, Rezvani E, Nolan H, Weidlich A, Daly R, Duesberg GS, CVD Growth and Processing of Graphene for Electronic Applications, Physica Status Solidi (b), Cilt. 248(11), 2011, s.2604-2608.
  • Batzill M, The Surface Science of Graphene: Metal Interfaces, CVD Synthesis, Nanoribbons, Chemical Modifications, and Defects, Surface Science Reports, Cilt. 67(3- 4), 2012, s.83-115.
  • Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T, Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide, Nature Materials, Cilt. 8, 2009, s.203-207.
  • Heer WA, Berger C, Ruan M, Sprinkle M, Li X, Hu Y, Zhang B, Hankinson J, Conrad E, Large Area and Structured Epitaxial Graphene Produced by Confinement Controlled Sublimation of Silicon Carbide, PNAS, Cilt. 108(41), 2011, s.16900-16905.
  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H, Highly Conducting Graphene Sheets and Langmuir–Blodgett Films, Nature Nanotechnology, Cilt. 3, 2008, s.538-542.
  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, Cilt. 45(7), 2007, s.1558-1565.
  • Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS, Preparation and Characterization of Graphene Oxide Paper, Nature, Cilt. 448, 2007, s.457-460.
  • Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC, Production and Processing of Graphene and 2d Crystals, Materialstoday, Cilt. 15(12), 2012, s.564-589.
  • Geim AK, Graphene: Status and Prospects, Science, Cilt. 324(5934), 2009, s.1530-1534.
  • Choi W, Lahiri I, Seelaboyina R, Kang SY, Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences, Cilt. 35, 2010, s.52- 72.
  • Wang C, Chen W, Han C, Wang G, Tang B, Tang C, Wang Y, Zou Y, Chen W , Zhang X-A, Qin S, Chang S, Wang L, Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition, Scientific Reports, Cilt. 4(4537), 2014, s.1-5.
  • Lavin-Lopez MP, Valverde JL, Cuevas MC, Garrido A, Sanchez-Silva L, Martinez P, Romero-Izquierdo A, Synthesis and Characterization of Graphene: Influence of Synthesis Variables, Phys. Chem. Chem. Phys., Cilt. 16, 2014, s.2962-2970.
  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, Cilt. 9(1), 2009, s.30-35.
  • Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan AK, Goldberg BB, Ruoff RS, Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates, ACS Nano, Cilt. 5(9), 2011, s.6916–6924.
  • Chen Y-Z, Medina H, Tsai HW, Wang YC, Yen Y-T, Manikandan A, Chueh Y-L, Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode, Chem. Mater., Cilt. 27(5), 2015, s.1646-1655.
  • Kyle JR, Guvenc A, Wang W, Ghazinejad M, Lin J, Guo S, Ozkan CS, Ozkan M, Centimeter-Scale High-Resolution Metrology of Entire CVD-Grown Graphene Sheets, small, Cilt. 7(18), 2011, s.2599-2606.
  • Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, Zeng C, Li Z, Yang J, Hou J, Low- Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano, Cilt. 5(4), 2011, s.3385–3390.
  • Magnuson CW, Kong X, Ji H, Tan C, Li H, Piner R, Ventrice Jr. CA, Ruoff R, Copper Oxide as a “Self-Cleaning” Substrate for Graphene Growth, Journal of Materials Research, Cilt. 29(3), 2014, s.403-409.
  • Kim SM, Hsu A, Lee YH, Dresselhaus M, Palacios T, Kim KK, Kong J, The Effect of Copper Pre-Cleaning on Graphene Sythesis, Nanotechnology, Cilt. 24(36), 2013, s.365602.
  • Oh T, CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid, Transactions on Electrical and Electronic Materials, Cilt. 14(5), 2013, s. 246-249.
  • Luo ZT, Lu Y, Singer DW, Berck E, Somers LA, Goldsmith BR, Charlie Johnson AT, Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-scale Graphene at Atmospheric Pressure. Chem Mater, Cilt. 23, 2011, s.1441–1447.
  • Richardson HW, Copper Compounds in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim.
  • Mack E, Osterhof GG, Kraner HM, Vapor Pressure of Copper Oxide and Copper, J. Am. Chem. Soc. Cilt 45(3), (1923), s.617-623.
  • Mattevi C, Kim H, Chhowalla M, A Review of Chemical Vapour Deposition of Graphene on Copper, Journal of Material Chemistry, Cilt. 21, 2011, s.3324-3334.
  • Yu Q, Liu X, Tang D, Extreme Extensibility of Copper Foil under Compound Forming Conditions, Scientific Repots, Cilt. 3(3556), 2013, s.1-6.
  • Straumanis ME, Yu LS, Lattice parameters, Densities, Expansion Coefficients and Perfection of Structure of Cu and of Cu–In α Phase, Acta Cryst., Cilt. A25, 1969, s.676- 682.
  • Virk HS, Nanowires – Implementations and Applications, Editör: Hassim A., CC BY- NC-SA, 2011, s.455-470.
  • Cullity DB, Elements of X-Ray Diffraction, Addison-Wesley INC, 1956, Maddachussetts, USA.
  • Meyers MA, Chawla KK, Mechanical Behavior of Materials, Cambridge University Press, 2009, s.345
  • Narula R, Reich S, Double Resonant Raman Spectra in Graphene and Graphite: A Two- Dimensional Explanation of the Raman Amplitude, Pysical Review B, Cilt. 78, 2008, s.165422.
  • Venezuela P, Lazzeri M, Mauri F, Theory of Double-Resonant Raman Spectra in Graphene: Intensity and Line Shape of Defect-Induced and Two-Phonon Bands, Pysical Review B, Cilt. 84, 2011, s.035433.
  • Ferrari AC, Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects, Solid State Communications, Cilt. 143, 2007, s.47-57.
  • Calizo I, Miao F, Bao W, Lau CN, Balandin AA, Variable Temperature Raman Microscopy as a Nanometrology Tool for Graphene Layers and Graphene Based Devices, Appl. Phys. Lett. Cilt . 91(7), 2007, s.071913-3.
  • Calizo I, Balandin AA, Bao W, Miao F, Lau CN, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett. Cilt. 7(9), 2007, s.2645-2649.
  • Liu W, Li H, Xu C, Khatami Y, Banerjee K, Synthesis of High-Quality Monolayer and Bilayer Graphene on Copper Using Chemical Vapor Deposition, Carbon, Cilt. 49, 2011, s.4122-4130.
  • Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC, Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure, Chemisty of Materials, Cilt. 23, 2011, s.1441-1447.
  • Mohsin A, Liu L, Liu P, Deng W, Ivanov IN, Li G, Dyck OE, Duscher G, Dunlap JR, Xiao K, Gu G, Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper, ACS Nano. Cilt . 7(10), 2013, s.8924-8931.
  • Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi J-Y, Pribat D, Lee YH, Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth, Nano Letters, Cilt. 11, 2011, s.4144-4148.
  • Kim SM, Hsu A, Lee Y-H, Dresselhaus M, Palacios T, Kim KK, Kong J, The effect of Copper Pre-Cleaning on Graphene Synthesis, Nanotechnology, Cilt. 24, 2013, s.365602 1-7.

BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ

Yıl 2016, Cilt: 18 Sayı: 54, 548 - 561, 01.09.2016

Öz

Tekdüze büyük ölçekli grafen tabakaları sentezlemek için çeşitli metotlar önerilmiştir. Bunlardan en çok tercih edileni bakır veya nikel alttaş üzerine kimyasal buhar biriktirme (CVD) yöntemiyle grafen büyütmektir. Son çalışmalarda, kusursuz formasyona sahip tek tabaka grafenin, bakırın kristal yapısına kritik bir şekilde bağlı olduğu bilinmektedir. Bu etkinin yanı sıra, bakır alttaşa yapılan ön işlemin de grafen oluşumunu etkilediği düşünülmüştür. Çalışmada alttaş olarak 25 μm kalınlıklı bakır folyolar standart temizleme, elektroliz ile parlatma ve tavlama gibi üç farklı ön işlemden geçirilmiştir. Daha sonra metan (CH4) ve hidrojen (H2) proses gazları kullanılarak grafen sentezlenmiştir. Bakır folyonun yapısı ve kalitesi XRD ve XRF ile belirlenmiştir. Büyütme işleminden sonra bakır alttaşların üst yüzeyleri ve alt yüzeyleri Konfokal Raman kullanılarak incelenmiş, oluşan grafenin özellikleri tespit edilmiştir. Sonuç olarak elektroliz ile parlatma ön işleminden geçirilmiş bakır alttaş üzerinde, tek tabaka grafen oluşumu gözlenirken diğer ön işlemlerden geçirilmiş bakır alttaşlar üzerinde çok tabakalı grafenler gözlenmiştir

Kaynakça

  • Geim AK., Novoselov KS. The Rise of Graphene, Nature Materials, Cilt. 6, 2007, s. 183- 191.
  • Slonczewski JC, Weiss PR, Band Structure of Graphite, Phys. Rev. Cilt. 109, 1958, s.272- 279.
  • Greshnov AA, Room-Temperature Quantum Hall Effect in Graphene: The Role of the Two-Dimensional Nature of Phonos, Journal of Physics: Conference Series, Cilt. 568, 2014 s.1-5.
  • Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK, Room-Temperature Quantum Hall Effect in Graphene, Science Cilt. 315, 2007, s.1379.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva, IV, Firsov, AA, Electric Field Effect in Atomically Thin Carbon Films, Science, Cilt. 306, 2004, s.666-669.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Two-Dimensional Gas of Massless Dirac Fermions in Graphene, Nature, Cilt. 438, 2005, s.197-200.
  • Lee C, Wei X, Kysar JW, Hone J, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, Cilt. 321, 2008, s.385-388.
  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., Cilt. 8, 2008, s.902-907.
  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS, Detection of Individual Gas Molecules Adsorbed on Graphene, Nature Materials, Cilt. 6, 2007, s.652-655.
  • Pearce R, Iakimov T, Andersson M, Hultman L, Spetz AL, Yakimova R, Epitaxially Grown Graphene Based Gas Sensors for Ultra Sensitive NO(2) Detection, Sensors and actuators. B, Chemical, Cilt. 155(2) 2011, s.451-455.
  • Fowler, JD, Allen, MJ, Tung, VC, Yang, Y, Kaner, RB, Weller, BH, Practical Chemical Sensors from Chemically Derived Graphene, ACS Nano, Cilt. 3(2), 2009, s.301-306.
  • Wang X, Zhi L, Mullen K. Transparent, Conductive Graphene Electrodes for Dye- Sensitized Solar Cells, Nano Letters, Cilt. 8(1), 2008, s.323-327.
  • Chen JH, Ishigami M, Jang C, Hines DR, Fuhrer MS, Williams ED, Printed Graphene Circuits, Adv. Mater., Cilt. 19(21), 2007, 3623–3627.
  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK, Fine Structure Constant Defines Visual Transparency of Graphene. Science Cilt.320(5881), 2008, s.1308.
  • Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen, YR, Gate-Variable Optical Transitions in Graphene, Science Cilt. 320(5873), 2008, s.206–209.
  • Xia F, Mueller T, Lin Y-M, Valdes-Garcia A, Avouris P, Ultrafast Graphene Photodedector, Nature Nanotechnology, Cilt. 4, 009, s.839-843.
  • Mueller T, Xia F, Avouris, P, Graphene Photodedectors for High-Speed Optical Communications, Nature Photon, Cilt. 4, 2010, s.297-301.
  • Bolotin KI, Sikes KJ, Jiang Z, Klima, M, Fudenberg G, Hone J, Kim P, Stormer HL, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Communications, Cilt 146(9-10), 2008, s.351-355.
  • Du X, Skacho I, Barker A, Andrei EY, Approaching Ballistic Transport in Suspended Graphene, Nature Nanotechnology, Cilt. 3, 2008, s.491-495.
  • Schwierz F, Graphene Transistors, Nature Nanotechnology, Cilt. 5, 2010, s.487-496.
  • Farmer DB, Perebeinos V, Lin Y-M, Dimitrakopoulos C, Avouris P, Charge Trapping and Scattering in Epitaxial Graphene, Phys. Rev. B, Cilt. 84, 2011, s.205417.
  • Xia F, Perebeinos V, Lin Y-M, Wu Y, Avouris P, The Origins and Limits of Metal- Graphene Junction, Nature Nanotechnology, Cilt. 5, 2011, s.179-184.
  • Xia F, Farmer DB, Lin Y-M, Avouris, P, Graphene Field-Effect Transistors with High on/off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Lett., Cilt. 10, 2010, s.715-718.
  • Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM, Ultrathin Planar Graphene Supercapacitors, Nano Lett., Cilt. 11(4), 2011, s.1423-1427.
  • Brownson DAC, Banks CE, Fabricating Supercapacitors: Highlighting the Impact of and Moieties, Chem. Commun. Cilt. 48, 2012, s.1425-1427.
  • Liu C, Yu Z, Neff D, Zhamu A, Jang BZ, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., Cilt. 10(12), 2010, s.14863-4868.
  • Wang G, Shen X, Yao J, Park J, Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries, Carbon, Cilt. 47(8), 2009, s.2049-2053.
  • Yoo EJ, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I, Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Lett., Cilt. 8(8), 2008, s.2277-2282.
  • Wu Z-S, Ren W, Feng LX, Cheng H-M, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries, ACS Nano, Cilt. 5(7), 2011, s.5463-5471.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos, SV, Grigorieva IV, Firsov AA, Electric Field Effect in Atomically Thin Carbon Films, Science, Cilt. 306(5696), 2004, s.666-669.
  • Allen MJ, Tung VC, Kaner RB, Honeycomb Carbon: A Review of Graphene, Chem. Rev., Cilt. 110 (1), 2010, s.132-145.
  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., Cilt. 22, 2010, s.3906-3924.
  • Losurdo M, Giangregorio MM, Capezzuto P, Bruno G, Graphene CVD Growth on Copper and Nickel: Role of Hydrogen in Kinetics and Structure, Phys. Chem. Chem. Phys., Cilt. 13, 2011, s.20836-20843.
  • Kumar S, McEvoy N, Kim H-Y, Lee K, Peltekis N, Rezvani E, Nolan H, Weidlich A, Daly R, Duesberg GS, CVD Growth and Processing of Graphene for Electronic Applications, Physica Status Solidi (b), Cilt. 248(11), 2011, s.2604-2608.
  • Batzill M, The Surface Science of Graphene: Metal Interfaces, CVD Synthesis, Nanoribbons, Chemical Modifications, and Defects, Surface Science Reports, Cilt. 67(3- 4), 2012, s.83-115.
  • Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T, Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide, Nature Materials, Cilt. 8, 2009, s.203-207.
  • Heer WA, Berger C, Ruan M, Sprinkle M, Li X, Hu Y, Zhang B, Hankinson J, Conrad E, Large Area and Structured Epitaxial Graphene Produced by Confinement Controlled Sublimation of Silicon Carbide, PNAS, Cilt. 108(41), 2011, s.16900-16905.
  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H, Highly Conducting Graphene Sheets and Langmuir–Blodgett Films, Nature Nanotechnology, Cilt. 3, 2008, s.538-542.
  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, Cilt. 45(7), 2007, s.1558-1565.
  • Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS, Preparation and Characterization of Graphene Oxide Paper, Nature, Cilt. 448, 2007, s.457-460.
  • Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L, Ferrari AC, Production and Processing of Graphene and 2d Crystals, Materialstoday, Cilt. 15(12), 2012, s.564-589.
  • Geim AK, Graphene: Status and Prospects, Science, Cilt. 324(5934), 2009, s.1530-1534.
  • Choi W, Lahiri I, Seelaboyina R, Kang SY, Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences, Cilt. 35, 2010, s.52- 72.
  • Wang C, Chen W, Han C, Wang G, Tang B, Tang C, Wang Y, Zou Y, Chen W , Zhang X-A, Qin S, Chang S, Wang L, Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition, Scientific Reports, Cilt. 4(4537), 2014, s.1-5.
  • Lavin-Lopez MP, Valverde JL, Cuevas MC, Garrido A, Sanchez-Silva L, Martinez P, Romero-Izquierdo A, Synthesis and Characterization of Graphene: Influence of Synthesis Variables, Phys. Chem. Chem. Phys., Cilt. 16, 2014, s.2962-2970.
  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, Cilt. 9(1), 2009, s.30-35.
  • Suk JW, Kitt A, Magnuson CW, Hao Y, Ahmed S, An J, Swan AK, Goldberg BB, Ruoff RS, Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates, ACS Nano, Cilt. 5(9), 2011, s.6916–6924.
  • Chen Y-Z, Medina H, Tsai HW, Wang YC, Yen Y-T, Manikandan A, Chueh Y-L, Low Temperature Growth of Graphene on Glass by Carbon-Enclosed Chemical Vapor Deposition Process and Its Application as Transparent Electrode, Chem. Mater., Cilt. 27(5), 2015, s.1646-1655.
  • Kyle JR, Guvenc A, Wang W, Ghazinejad M, Lin J, Guo S, Ozkan CS, Ozkan M, Centimeter-Scale High-Resolution Metrology of Entire CVD-Grown Graphene Sheets, small, Cilt. 7(18), 2011, s.2599-2606.
  • Li Z, Wu P, Wang C, Fan X, Zhang W, Zhai X, Zeng C, Li Z, Yang J, Hou J, Low- Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano, Cilt. 5(4), 2011, s.3385–3390.
  • Magnuson CW, Kong X, Ji H, Tan C, Li H, Piner R, Ventrice Jr. CA, Ruoff R, Copper Oxide as a “Self-Cleaning” Substrate for Graphene Growth, Journal of Materials Research, Cilt. 29(3), 2014, s.403-409.
  • Kim SM, Hsu A, Lee YH, Dresselhaus M, Palacios T, Kim KK, Kong J, The Effect of Copper Pre-Cleaning on Graphene Sythesis, Nanotechnology, Cilt. 24(36), 2013, s.365602.
  • Oh T, CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid, Transactions on Electrical and Electronic Materials, Cilt. 14(5), 2013, s. 246-249.
  • Luo ZT, Lu Y, Singer DW, Berck E, Somers LA, Goldsmith BR, Charlie Johnson AT, Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-scale Graphene at Atmospheric Pressure. Chem Mater, Cilt. 23, 2011, s.1441–1447.
  • Richardson HW, Copper Compounds in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim.
  • Mack E, Osterhof GG, Kraner HM, Vapor Pressure of Copper Oxide and Copper, J. Am. Chem. Soc. Cilt 45(3), (1923), s.617-623.
  • Mattevi C, Kim H, Chhowalla M, A Review of Chemical Vapour Deposition of Graphene on Copper, Journal of Material Chemistry, Cilt. 21, 2011, s.3324-3334.
  • Yu Q, Liu X, Tang D, Extreme Extensibility of Copper Foil under Compound Forming Conditions, Scientific Repots, Cilt. 3(3556), 2013, s.1-6.
  • Straumanis ME, Yu LS, Lattice parameters, Densities, Expansion Coefficients and Perfection of Structure of Cu and of Cu–In α Phase, Acta Cryst., Cilt. A25, 1969, s.676- 682.
  • Virk HS, Nanowires – Implementations and Applications, Editör: Hassim A., CC BY- NC-SA, 2011, s.455-470.
  • Cullity DB, Elements of X-Ray Diffraction, Addison-Wesley INC, 1956, Maddachussetts, USA.
  • Meyers MA, Chawla KK, Mechanical Behavior of Materials, Cambridge University Press, 2009, s.345
  • Narula R, Reich S, Double Resonant Raman Spectra in Graphene and Graphite: A Two- Dimensional Explanation of the Raman Amplitude, Pysical Review B, Cilt. 78, 2008, s.165422.
  • Venezuela P, Lazzeri M, Mauri F, Theory of Double-Resonant Raman Spectra in Graphene: Intensity and Line Shape of Defect-Induced and Two-Phonon Bands, Pysical Review B, Cilt. 84, 2011, s.035433.
  • Ferrari AC, Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects, Solid State Communications, Cilt. 143, 2007, s.47-57.
  • Calizo I, Miao F, Bao W, Lau CN, Balandin AA, Variable Temperature Raman Microscopy as a Nanometrology Tool for Graphene Layers and Graphene Based Devices, Appl. Phys. Lett. Cilt . 91(7), 2007, s.071913-3.
  • Calizo I, Balandin AA, Bao W, Miao F, Lau CN, Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers, Nano Lett. Cilt. 7(9), 2007, s.2645-2649.
  • Liu W, Li H, Xu C, Khatami Y, Banerjee K, Synthesis of High-Quality Monolayer and Bilayer Graphene on Copper Using Chemical Vapor Deposition, Carbon, Cilt. 49, 2011, s.4122-4130.
  • Luo Z, Lu Y, Singer DW, Berck ME, Somers LA, Goldsmith BR, Johnson ATC, Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure, Chemisty of Materials, Cilt. 23, 2011, s.1441-1447.
  • Mohsin A, Liu L, Liu P, Deng W, Ivanov IN, Li G, Dyck OE, Duscher G, Dunlap JR, Xiao K, Gu G, Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper, ACS Nano. Cilt . 7(10), 2013, s.8924-8931.
  • Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin H-J, Choi J-Y, Pribat D, Lee YH, Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth, Nano Letters, Cilt. 11, 2011, s.4144-4148.
  • Kim SM, Hsu A, Lee Y-H, Dresselhaus M, Palacios T, Kim KK, Kong J, The effect of Copper Pre-Cleaning on Graphene Synthesis, Nanotechnology, Cilt. 24, 2013, s.365602 1-7.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA29UU72DC
Bölüm Araştırma Makalesi
Yazarlar

Mücahit Yılmaz Bu kişi benim

Yasin Ramazan Eker Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 18 Sayı: 54

Kaynak Göster

APA Yılmaz, M., & Eker, Y. R. (2016). BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(54), 548-561.
AMA Yılmaz M, Eker YR. BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ. DEUFMD. Eylül 2016;18(54):548-561.
Chicago Yılmaz, Mücahit, ve Yasin Ramazan Eker. “BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, sy. 54 (Eylül 2016): 548-61.
EndNote Yılmaz M, Eker YR (01 Eylül 2016) BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 54 548–561.
IEEE M. Yılmaz ve Y. R. Eker, “BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ”, DEUFMD, c. 18, sy. 54, ss. 548–561, 2016.
ISNAD Yılmaz, Mücahit - Eker, Yasin Ramazan. “BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/54 (Eylül 2016), 548-561.
JAMA Yılmaz M, Eker YR. BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ. DEUFMD. 2016;18:548–561.
MLA Yılmaz, Mücahit ve Yasin Ramazan Eker. “BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, c. 18, sy. 54, 2016, ss. 548-61.
Vancouver Yılmaz M, Eker YR. BAKIR ALTTAŞA YAPILAN ÖN İŞLEMİN TEK TABAKA GRAFEN FİLM KALİTESİNE ETKİSİ. DEUFMD. 2016;18(54):548-61.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.